Multiplicity theorems for scalar periodic problems at resonance with p-Laplacian-like operator

Leszek Gasiński

Received: 14 April 2006 / Accepted: 15 September 2006 / Published online: 27 October 2006
© Springer Science+Business Media B.V. 2006

Abstract

In this paper, we study the existence of multiple solutions for nonlinear scalar periodic problems at resonance with p-Laplacian-like operator. Using the Ekeland variational principle a two-solution theorem is obtained and using also a local linking theorem a three-solution theorem is proved.

Keywords Periodic problems • Clarke subdifferential • Resonance • p-Laplacian-like operator • Local linking

2000 AMS subject classification $49 \mathrm{~J} 40 \cdot 34 \mathrm{~B} 15 \cdot 34 \mathrm{C} 25$

1 Introduction

In this paper, we prove the existence of multiple solutions for the following nonlinear periodic problem:

$$
\begin{align*}
& \left(a\left(t, u^{\prime}(t)\right)\right)^{\prime}+\partial j(t, u(t)) \ni 0 \quad \text { for a.a. } t \in(0, T), \tag{1.1}\\
& u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) .
\end{align*}
$$

Here $(t, y) \longmapsto a(t, y)$ is a set-valued map and $\partial j(t, \zeta)$ is the generalized subdifferential of a generally nonsmooth locally Lipschitz potential $\zeta \longmapsto j(t, \zeta)$. Let $p \in(1,+\infty)$ and consider the Sobolev space

$$
W_{\mathrm{per}}^{1, p}((0, T))=\left\{u \in W^{1, p}((0, T)): u(0)=u(T)\right\} .
$$

Recall that $W^{1, p}((0, T))$ is embedded into $C([0, T])$ and so the pointwise evaluation at $t=0$ and $t=T$ make sense. For a given $u \in W_{\mathrm{per}}^{1, p}((0, T))$, the multivalued term $\left(a\left(t, u^{\prime}(t)\right)\right)^{\prime}$ is interpreted as follows:

[^0]$$
\left(a\left(t, u^{\prime}(t)\right)\right)^{\prime}=\left\{v^{\prime} \in L^{p^{\prime}}((0, T)), \quad v(t) \in a\left(t, u^{\prime}(t)\right) \quad \text { for a.a. } t \in(0, T)\right\},
$$
where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Here derivative v^{\prime} is understood in the sense of distributions. By a solution of problem (1.1) we mean a function $u \in C^{1}([0, T])$, such that
$$
v^{\prime}(t)=u^{*}(t) \quad \text { for a.a. } t \in(0, T)
$$
with $v^{\prime} \in\left(a\left(\cdot, u^{\prime}(\cdot)\right)\right)^{\prime}$ and $u^{*} \in L^{p^{\prime}}((0, T)), u^{*}(t) \in \partial j(t, u(t))$ for almost all $t \in(0, T)$.
Our hypotheses on the set-valued map $a(t, y)$, include as a special case the scalar p-Laplacian differential operator. Recently there has been increasing interest for sec-ond-order scalar periodic differential equations involving the p-Laplacian differential operator. We mention the works of Dang and Oppenheimer [6], Denkowski et al. [8], Del Pino et al. [7], Fabry and Fayyad [9], Gasiński and Papageorgiou [10,11], Guo [13] and Papageorgiou and Papageorgiou [19]. Most of the aforementioned works prove existence theorems. Multiplicity results were proved only by Del Pino et al., Denkowski et al., Gasinski-Papageorgiou and Papageorgiou-Papageorgiou. In all these works the differential operator is the scalar p-Laplacian and the first and third assume a smooth potential (i.e. $j(t, \cdot) \in C^{1}(\mathbb{R})$), while in Gasiński-Papageorgiou the potential $j(t, \cdot)$ is in general nonsmooth. In Del Pino et al. the method of the proof uses degree theory and the time map. In Gasiński-Papageorgiou and Papageorgiou-Papageorgiou, the approach is variational using local linking (Gasiński-Papageorgiou) or the so-called second deformation theorem (Papageorgiou-Papageorgiou). All these works prove the existence of two solutions. For other periodic multiple solutions of hemivariational inequalities, we refer to Adly and Motreanu [1] and Motreanu and Rǎdulescu [18].

Our approach in the paper is variational and uses the critical point theory for locally Lipschitz functions (see Chang [4] and Kourogenis and Papageorgiou [14]). We also prove a "three solution theorem". This is done for a so-called "strongly resonant" problem (terminology coined by Bartolo et al. [2]). None of the previous works mentioned above examined such problems. The main difficulty that such problems exhibit is a partial lack of compactness (see Lemma 3.4 below).

In the next section, we recall basic definitions and notions needed in what follows. Section 3 contains the theorem on the existence of two solutions of problem (1.1). In Sect. 4 we proof the theorem on the existence of there solutions of problem (1.1).

2 Mathematical background

Let X be a Banach space and X^{*} its topological dual. By $\|\cdot\|$ we denote the norm in X, by $\|\cdot\|_{*}$ the norm in X^{*}, and by $\langle\cdot, \cdot\rangle$ the duality brackets for the pair $\left(X, X^{*}\right)$. A function $\varphi: X \longmapsto \mathbb{R}$ is said to be locally Lipschitz, if for every $x \in X$, there exists a neighbourhood U of x and a constant $k>0$ (depending on U), such that $|\varphi(z)-\varphi(y)| \leq k\|z-y\|$ for all $z, y \in U$. It is well known that a convex, lower semicontinuous and proper (i.e. not identically $+\infty$) function $g: X \longmapsto \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ is locally Lipschitz in the interior of its effective domain domg $=\{x \in X: g(x)<+\infty\}$. For a locally Lipschitz function $\varphi: X \longmapsto \mathbb{R}$, we define the generalized directional derivative at $x \in X$ in the direction $h \in X$, by

$$
\varphi^{0}(x ; h)=\limsup _{\substack{x^{\prime} \rightarrow x \\ t}} \frac{\varphi\left(x^{\prime}+t h\right)-\varphi\left(x^{\prime}\right)}{t}
$$

The function $X \ni h \longmapsto \varphi^{0}(x ; h) \in \mathbb{R}$ is sublinear, continuous and so from the Hahn-Banach theorem it follows that $\varphi^{0}(x ; \cdot)$ is the support function of a nonempty, convex and w^{*}-compact set, defined by

$$
\partial \varphi(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, h\right\rangle \leq \varphi^{0}(x ; h) \text { for all } h \in X\right\} .
$$

The set $\partial \varphi(x)$ is called generalized or Clarke subdifferential of φ at x. If $\varphi: X \longmapsto \mathbb{R}$ is also convex, then the subdifferential of φ in the sense of convex analysis coincides with the generalized subdifferential introduced above. If φ is strictly differentiable at x (in particular if φ is continuously Gâteaux differentiable at x), then $\partial \varphi(x)=\left\{\varphi^{\prime}(x)\right\}$. If $\varphi, \psi: X \longmapsto \mathbb{R}$ are locally Lipschitz functions, then $\partial(\varphi+\psi)(x) \subseteq \partial \varphi(x)+\partial \psi(x)$ and $\partial(t \varphi)(x)=t \partial \varphi(x)$ for all $t \in \mathbb{R}$ and all $x \in X$.

Let $\varphi: X \longmapsto \mathbb{R}$ be a locally Lipschitz function on a Banach space X. A point $x \in X$ is said to be a critical point of φ, if $0 \in \partial \varphi(x)$. If $x \in X$ is a critical point of φ, then the value $c=\varphi(x)$ is called a critical value of φ. It is easy to see that, if $x \in X$ is a local extremum of φ, then $0 \in \partial \varphi(x)$. Moreover, the multifunction $X \ni x \longmapsto \partial \varphi(x) \in 2^{X^{*}}$ is upper semicontinuous, where the space X^{*} is equipped with the w^{*}-topology, i.e. for any w^{*}-open set $U \subseteq X^{*}$, the set $\{x \in X: \quad \partial \varphi(x) \subseteq U\}$ is open in X. For more details on the generalized subdifferential we refer to the book of Clarke [5, Chap. 2].

In the classical (smooth) critical point theory, crucial role plays a compactness type condition, known as the Palais-Smale condition. When the function is only locally Lipschitz, this condition takes the following form (introduced by Chang [4, Definition 2, p 113])

A locally Lipschitz function $\varphi: X \longmapsto \mathbb{R}$ satisfies the nonsmooth Palais-Smale condition, if any sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that

$$
\sup \left\{\varphi\left(x_{n}\right): \quad n \geq 1\right\}<+\infty
$$

and

$$
m^{\varphi}\left(x_{n}\right)=\inf \left\{\left\|x^{*}\right\|_{*}: x^{*} \in \partial \varphi\left(x_{n}\right)\right\} \longrightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

has a strongly convergent subsequence.
If $\varphi \in \mathcal{C}^{1}(X)$, then $\partial \varphi\left(x_{n}\right)=\left\{\varphi^{\prime}\left(x_{n}\right)\right\}$ and so we see that the above definition of the Palais-Smale condition coincides with the classical one.

We will also use a weaker form of the Palais-Smale condition, which for the smooth functions was first introduced by Cerami [3]. In our nonsmooth setting this condition takes the following form

A locally Lipschitz function $\varphi: X \longmapsto \mathbb{R}$ satisfies the nonsmooth Cerami condition, if any sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that

$$
\sup \left\{\varphi\left(x_{n}\right): n \geq 1\right\}<+\infty
$$

and

$$
\left(1+\left\|x_{n}\right\|\right) m^{\varphi}\left(x_{n}\right) \longrightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

has a strongly convergent subsequence.

In our hypotheses, we will use the first nonzero eigenvalue λ_{1} of the negative p-Laplacian $-\Delta_{p} u=-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}$ with periodic boundary condition. So we consider the following quasilinear eigenvalue problem:

$$
\begin{align*}
& -\left(\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right)^{\prime}=\lambda|u(t)|^{p-2} u(t) \quad \text { for a.a. } t \in(0, T) \tag{2.1}\\
& u(0)=u(T), u^{\prime}(0)=u v(T) .
\end{align*}
$$

It is well-known that $\lambda_{0}=0$ is an eigenvalue of (2.1) and is simple and isolated. So, if $\lambda_{1}=\inf \left\{\lambda>0: \lambda\right.$ is an eigenvalue of $\left.-\Delta_{p}\right\}$, then $\lambda_{1}>0$ and

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{p}^{p} \geq \lambda_{1}\|u\|_{p}^{p}, \quad \forall u \in V \tag{2.2}
\end{equation*}
$$

where $V=\left\{u \in W_{\mathrm{per}}^{1, p}((0, T)): \int_{0}^{T}|u(t)|^{p-2} u(t) \mathrm{d} t=0\right\}$ (see Mawhin [17, Corollary 9.3, p 60]).

We will use the generalized Ekeland variational principle (see e.g. Gasiński and Papageorgiou [12, Corollary 1.4.7, p 91]), in the following form

Theorem 2.1 If $\left(X, d_{X}\right)$ is a complete metric space, $\varphi: X \longrightarrow \overline{\mathbb{R}}$ is proper, lower semicontinuous and bounded below, $\varepsilon, \lambda>0$ and $x_{0} \in X$ is such that

$$
\varphi\left(x_{0}\right) \leq \inf _{X} \varphi+\varepsilon,
$$

then there exists $x_{\lambda} \in X$, such that

$$
\begin{aligned}
& \varphi\left(x_{\lambda}\right) \leq \varphi\left(x_{0}\right), \quad \mathrm{d}\left(x_{\lambda}, x_{0}\right) \leq \lambda, \\
& \varphi\left(x_{\lambda}\right) \leq \varphi(x)+\frac{\varepsilon}{\lambda} \mathrm{d}\left(x, x_{\lambda}\right), \quad \forall x \in X .
\end{aligned}
$$

The next result is due to Szulkin [20, Lemma 3.1, p 81].
Theorem 2.2 If X is a Banach space, $\chi: X \longrightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ is a lower semicontinuous, convex function with $\chi(0)=0$ and

$$
-\|h\|_{X} \leq \chi(h), \quad \forall h \in X
$$

then there exists $u^{*} \in X^{*}$, such that $\left\|u^{*}\right\|_{X^{*}} \leq 1$ and

$$
\left\langle u^{*}, h\right\rangle \leq \chi(h), \quad \forall h \in X .
$$

In the three-solution result we will use the notion of linking, which plays a crucial role in critical point theory (classical and nonsmooth alike). Suppose that X is a Hausdorff topological space and E_{1} and D are nonempty subsets of X. We say that the sets E_{1} and $D \operatorname{link}$ (homotopically) in X if $E_{1} \cap D=\emptyset$ and there exists a set $E \subseteq X$, such that $E_{1} \subseteq E$ and for any continuous function $\vartheta: E \longrightarrow X$, such that $\left.\vartheta\right|_{E_{1}}=i d_{E_{1}}$, we have $\vartheta(E) \cap D \neq \emptyset$.

Using this notion, Kourogenis and Papageorgiou [14] proved the following abstract minimax principle (see also Gasiński and Papageorgiou [12, Theorem 2.1.2, p139] for a more general version).

Theorem 2.3 If X is a reflexive Banach space, E_{1} and D are nonempty subsets of X with D closed, E_{1} and D link in $X, \varphi: X \rightarrow \mathbb{R}$ is locally Lipschitz, satisfies the nonsmooth Cerami condition, $\sup _{E_{1}} \varphi<\inf _{D} \varphi$ and

$$
c=\inf _{\eta \in \Gamma} \sup _{v \in E} \varphi(\eta(v)),
$$

where

$$
\Gamma=\left\{\eta \in C(E ; X):\left.\eta\right|_{E_{1}}=i d_{E_{1}}\right\}
$$

and $E \supseteq E_{1}$ is as in the definition of linking sets,
then $c \geq \inf _{D} \varphi$ and c is a critical value of φ, i.e. there exists a critical point $x_{0} \in X$ of φ such that $\varphi\left(x_{0}\right)=c$. Moreover, if $c=\inf _{D} \varphi$, then $x_{0} \in D$.

3 Existence of two solutions

The precise hypotheses on the data of (1.1) are the following:
$H(a) a(t, y)=\partial G(t, y)$, where $G:(0, T) \times \mathbb{R} \longrightarrow \mathbb{R}$ is a functional, such that
(1) the function $(t, y) \longrightarrow G(t, y)$ is continuous;
(2) for every $t \in(0, T)$, the function $y \longmapsto G(t, y)$ is strictly convex, $G(t, 0)=0$ for all $t \in(0, T)$ and $\partial G(0, \cdot)=\partial G(T, \cdot) ;$
(3) for all $t \in(0, T)$, all $y \in \mathbb{R}$ and all $v^{*} \in a(t, y)=\partial G(t, y)$, we have

$$
\left|v^{*}\right| \leq a_{1}(t)+c_{1}|y|^{p-1}
$$

with $a_{1} \in L^{p^{\prime}}((0, T))_{+}\left(\right.$where $\left.\frac{1}{p}+\frac{1}{p^{\prime}}=1\right), c_{1}>0$;
(4) for all $t \in(0, T)$, all $y \in \mathbb{R}$ and all $v^{*} \in a(t, y)$, we have

$$
v^{*} y \leq p G(t, y) ;
$$

(5) for all $t \in(0, T)$ and all $y \in \mathbb{R}$, we have

$$
c_{0}|y|^{p} \leq G(t, y),
$$

for some $c_{0}>0$.
Remark 3.1 Suppose that $\beta \in C_{\text {per }}([0, T]), \beta \geq \gamma>0$ for all $t \in(0, T)$ and $G(t, y)=$ $\frac{1}{p} \beta(t)|y|^{p}$. Then

$$
a(t, y)=\partial G(t, y)=\beta(t)|y|^{p-2} y
$$

satisfies hypotheses $H(a)$ and the resulting differential operator is a weighted p-Laplacian. If $\beta \equiv 1$, then we have the p-Laplacian. We remark that hypotheses $H(a)$ do not require that the differential operator is homogeneous. Such single valued operators independent of $t \in(0, T)$ were considered by Manásevich and Mawhin [15] and Mawhin [16]. However, in these works the problem is vectorial and no growth restriction is imposed on the map $y \longmapsto a(y)$.

Another possibility of G is the following

$$
G(t, y)=\frac{\beta(t)}{p}\left[\left(1+y^{2}\right)^{\frac{p}{2}}-1\right]
$$

with $p>1$ and $\beta \in C_{\text {per }}([0, T]), \beta(t) \geq \gamma>0$ for all $t \in(0, T)$.
One more possibility of G is the following

$$
G(t, y)=\frac{\beta(t)}{p}\left[(1+|y|)^{p}-1\right]
$$

where $p>1$ and β are as above. In this case, the map a is really multivalued and it still satisfies hypotheses $H(a)$.
$H(j)_{1} j:(0, T) \times \mathbb{R} \longrightarrow \mathbb{R}$ is a function, such that
(1) for every $\zeta \in \mathbb{R}$, the function $t \longrightarrow j(t, \zeta)$ is measurable;
(2) for almost all $t \in(0, T)$, the function $\zeta \longmapsto j(t, \zeta)$ is locally Lipschitz with $L^{p^{\prime}}((0, T))_{+}$-Lipschitz constant;
(3) for every $M>0$, there exists $\widehat{a}_{M} \in L^{1}((0, T))_{+}$, such that for almost all $t \in(0, T)$, all $|\zeta| \leq M$ and all $u^{*} \in \partial j(t, \zeta)$, we have $\left|u^{*}\right| \leq \widehat{a}_{M}(t)$;
(4) there exist $j_{ \pm} \in L^{1}((0, T))$, such that

$$
\lim _{\zeta \rightarrow \pm \infty} j(t, \zeta)=j_{ \pm}(t)
$$

uniformly for almost all $t \in(0, T)$ and $\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t \leq 0$;
(5) there exists $\delta>0$, such that for almost all $t \in(0, T)$ and all $|\zeta| \leq \delta$, we have $j(t, \zeta) \geq 0$ (local sign condition);
(6) for almost all $t \in(0, T)$ and all $\zeta \in \mathbb{R}$, we have

$$
j(t, \zeta) \leq c_{0} \lambda_{1}|\zeta|^{p}
$$

with $c_{0}>0$ as in hypothesis $H(a)(5)$ and $\lambda_{1}>0$ being the first nonzero eigenvalue of the negative p-Laplacian with periodic boundary condition.

Remark 3.2 Hypothesis $H(j)_{1}(4)$ classifies the problem as strongly resonant. Hypotheses $H(j)_{1}(5)$ and (6) imply that $j(t, 0)=0$ for almost all $t \in(0, T)$.

We consider the nonlinear operator $A: W_{\text {per }}^{1, p}((0, T)) \longrightarrow 2^{W_{\text {per }}^{1, p}((0, T))^{*}}$, defined by

$$
\begin{aligned}
& A(u)=\left\{v^{*} \in W_{\mathrm{per}}^{1, p}((0, T))^{*}: \text { there exists } v \in S_{a\left(\cdot, u^{\prime}(\cdot)\right)}^{p^{\prime}}\right. \text { such that } \\
&\text { for ally } \left.\in W_{\mathrm{per}}^{1, p}((0, T)):\left\langle v^{*}, y\right\rangle=\int_{0}^{T} v(t) y^{\prime}(t) \mathrm{d} t\right\} .
\end{aligned}
$$

Hence

$$
A(u)=\left\{-v^{\prime}: v \in S_{a\left(\cdot, u^{\prime}(\cdot)\right)}^{p^{\prime}}\right\}
$$

(the derivative taken in the sense of the distributions). Clearly for every $u \in W_{\mathrm{per}}^{1, p}$ $((0, T))$, the set $A(u) \subseteq W_{\mathrm{per}}^{1, p}((0, T))^{*}$ is nonempty, convex and w-compact. Moreover, the function $u \longmapsto A(u)$ is monotone, thus in fact maximal monotone (see Gasiński and Papageorgiou [12, Proposition 1.4.6, p 74]).

Lemma 3.3 Let hypotheses $H(a)$ hold. If $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$ is a sequence, such that

$$
\begin{gather*}
u_{n} \longrightarrow u \quad \text { weakly in } W_{\mathrm{per}}^{1, p}((0, T)), \tag{3.1}\\
v_{n}^{*} \in A\left(u_{n}\right) \quad \forall n \geq 1
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left\langle v_{n}^{*}, u_{n}-u\right\rangle \leq 0 \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
u_{n} \longrightarrow u \quad \text { in } W_{\mathrm{per}}^{1, p}((0, T)) . \tag{3.3}
\end{equation*}
$$

Proof Let $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$ and $\left\{v_{n}^{*}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))^{*}$ be sequences as postulated in the assumptions of the lemma. Then, we have

$$
\left\langle v_{n}^{*}, u_{n}-u\right\rangle=\int_{0}^{T} v_{n}(t)\left(u_{n}-u\right)^{\prime}(t) \mathrm{dt} \quad \forall n \geq 1
$$

with $_{n} \in S_{a\left(\cdot, u_{n}^{\prime}(\cdot)\right)}^{p^{\prime}}$. By virtue of hypothesis $H(a)(3)$, we see that the sequence $\left\{v_{n}\right\}_{n \geq 1} \subseteq$ $L^{p^{\prime}}((0, T))$ is bounded. So by passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
v_{n} \longrightarrow v \quad \text { weakly in } L^{p^{\prime}}((0, T)) \tag{3.4}
\end{equation*}
$$

for some $v \in L^{p^{\prime}}((0, T))$.
We claim that $v \in S_{a\left(\cdot, u^{\prime}(\cdot)\right)}^{p^{\prime}}$. To this end let $y \in W_{\text {per }}^{1, p}((0, T))$ and $w^{*} \in A(y)$. From the definition of the operator A, we know that we can find $w \in S_{a\left(\cdot y^{\prime}(\cdot)\right)}^{p^{\prime}}$, such that

$$
\left\langle w^{*}, z\right\rangle=\int_{0}^{T} w(t) z^{\prime}(t) \mathrm{d} t, \quad \forall z \in W_{\mathrm{per}}^{1, p}((0, T)) .
$$

Since $a(t, \zeta)=\partial G(t, \zeta)$, the operator $\zeta \longrightarrow a(t, \zeta)$ is maximal monotone and so, we have

$$
\begin{align*}
0 \leq & \int_{0}^{T}\left(v_{n}(t)-w(t)\right)\left(u_{n}^{\prime}(t)-y^{\prime}(t)\right) \mathrm{d} t \\
= & \int_{0}^{T} v_{n}(t)\left(u_{n}^{\prime}-u^{\prime}\right)(t) \mathrm{d} t+\int_{0}^{T} v_{n}(t)\left(u^{\prime}-y^{\prime}\right)(t) \mathrm{d} t \\
& -\int_{0}^{T} w(t)\left(u_{n}^{\prime}-y^{\prime}\right)(t) \mathrm{d} t \\
= & \left\langle v_{n}^{*}, u_{n}-u\right\rangle+\int_{0}^{T} v_{n}(t)\left(u^{\prime}-y^{\prime}\right)(t) \mathrm{d} t-\int_{0}^{T} w(t)\left(u_{n}^{\prime}-y^{\prime}\right)(t) \mathrm{d} t . \tag{3.5}
\end{align*}
$$

From (3.1), (3.2) and (3.4), if we pass to the limit as $n \rightarrow+\infty$ in (3.5), we obtain

$$
0=\int_{0}^{T}(v(t)-w(t))\left(u^{\prime}(t)-y^{\prime}(t)\right) \mathrm{d} t=\left\langle v^{*}-w^{*}, u-y\right\rangle
$$

with $v^{*}=-v^{\prime}$. But the pair $\left(y, w^{*}\right) \in \operatorname{Gr} A$ was arbitrary and we know that the operator A is maximal monotone. So it follows that $\left(u, v^{*}\right) \in \operatorname{Gr} A$, i.e. $v^{*} \in A(u)$ and

$$
\left\langle v^{*}, z\right\rangle=\int_{0}^{T} \bar{v}(t) z^{\prime}(t) \mathrm{d} t, \quad \forall z \in W_{\mathrm{per}}^{1, p}((0, T))
$$

for some $\bar{v} \in S_{a\left(\cdot, u^{\prime}(\cdot)\right)}^{p^{\prime}}$ and so $v=\bar{v} \in S_{a\left(\cdot, u^{\prime}(\cdot)\right)}^{p^{\prime}}$.
Because of the hypotheses, we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left\langle v_{n}^{*}-v^{*}, u_{n}-u\right\rangle \leq 0 \tag{3.6}
\end{equation*}
$$

On the other hand by virtue of the monotonicity of $a(t, \cdot)$, we have

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty}\left\langle v_{n}^{*}-v^{*}, u_{n}-u\right\rangle=\liminf _{n \rightarrow+\infty} \int_{0}^{T}\left(v_{n}(t)-v(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) \mathrm{d} t \geq 0 \tag{3.7}
\end{equation*}
$$

Comparing (3.6) and (3.7), we infer that

$$
\left\langle v_{n}^{*}-v^{*}, u_{n}-u\right\rangle=\int_{0}^{T}\left(v_{n}(t)-v(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) \mathrm{d} t \longrightarrow 0 .
$$

Because of the monotonicity of $a(t, \cdot)=\partial G(t, \cdot)$, the integrand

$$
\begin{equation*}
\beta_{n}(t)=\left(v_{n}-v\right)(t)\left(u_{n}^{\prime}-u^{\prime}\right)(t) \longrightarrow 0 \quad \text { for a.a. } t \in(0, T) . \tag{3.8}
\end{equation*}
$$

So we have

$$
\beta_{n}(t) \longrightarrow 0 \quad \text { for a.a. } t \in(0, T)
$$

and

$$
\left|\beta_{n}(t)\right| \leq k_{1}(t) \quad \text { for a.a. } t \in(0, T) \text { and all } n \geq 1,
$$

with $k_{1} \in L^{1}((0, T))_{+}$. For all $(t, y) \in(0, T) \times \mathbb{R}$ and all $v \in a(t, y)$, from the definition of the convex subdifferential, we have

$$
v(-y) \leq G(t, 0)-G(t, y)=-G(t, y)
$$

so, from hypothesis $H(a)(5)$, we get

$$
\begin{equation*}
v y \geq G(t, y) \geq c_{0}|y|^{p} . \tag{3.9}
\end{equation*}
$$

Using hypothesis $H(a)(3)$ and (3.9), for all $t \in(0, T) \backslash N$, with $|N|_{1}=0$, we have

$$
\begin{align*}
k_{1}(t) \geq & \beta_{n}(t)=\left(v_{n}-v\right)(t)\left(u_{n}^{\prime}-u^{\prime}\right)(t) \\
\geq & c_{0}\left[\left|u_{n}^{\prime}(t)\right|^{p}+\left|u^{\prime}(t)\right|^{p}\right]-\left|u_{n}^{\prime}(t)\right|^{p}\left(a_{1}(t)+c_{1}\left|u^{\prime}(t)\right|^{p-1}\right) \\
& -\left|u^{\prime}(t)\right|\left(a_{1}(t)+c_{1}\left|u_{n}^{\prime}(t)\right|^{p-1}\right) . \tag{3.10}
\end{align*}
$$

From (3.10), it follows that for all $t \in(0, T) \backslash N$, the sequence $\left\{u_{n}^{\prime}(t)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded. So by passing to a subsequence (depending in general on $t \in(0, T) \backslash N$), we may assume that

$$
u_{n}^{\prime}(t) \longrightarrow \widehat{u}(t) \quad \text { in } \mathbb{R} .
$$

We fix $t \in(0, T) \backslash N$ and select $f_{n}(t) \in a(t, \widehat{u}(t))$, such that

$$
\left|v_{n}(t)-f_{n}(t)\right|=\mathrm{d}\left(v_{n}(t), a(t, \widehat{u}(t))\right) \leq h^{*}\left(a\left(t, u_{n}^{\prime}(t)\right), a(t, \widehat{u}(t))\right),
$$

with h^{*} being the Hausdorff distance of sets (see Gasiński and Papageorgiou [12, Definition 1.2.4, p 18]). Note that $\left\{f_{n}(t)\right\}_{n \geq 1} \subseteq a(t, \widehat{u}(t)) \in P_{k c}(\mathbb{R})$ and so by passing to a subsequence if necessary, we may assume that

$$
f_{n}(t) \longrightarrow f(t) \in a(t, \widehat{u}(t)) .
$$

Because $a(t, \cdot)$ is maximal monotone, it is upper semicontinuous (see Gasiński and Papageorgiou [12, Proposition 1.4.5, p 73]) and also h-upper semicontinuous (see Gasiński and Papageorgiou [12, Proposition 1.2.8, p 19]). Therefore, we have

$$
h^{*}\left(a\left(t, u_{n}^{\prime}(t)\right), a(t, \widehat{u}(t))\right) \longrightarrow 0
$$

so

$$
v_{n}(t) \longrightarrow f(t) \quad \text { for all } t \in(0, T) \backslash N .
$$

Because of (3.8), in the limit as $n \rightarrow+\infty$, we have

$$
\begin{equation*}
(f(t)-v(t))\left(\widehat{u}(t)-u^{\prime}(t)\right)=0, \quad \forall t \in(0, T) \backslash N \tag{3.11}
\end{equation*}
$$

By hypothesis, we have that $a(t, \cdot) \in \partial G(t, \cdot)$ and the function $y \longmapsto G(t, y)$ is strictly convex. Therefore the operator $y \longmapsto a(t, y)$ is strictly monotone. Since $f(t) \in a(t, \widehat{u}(t))$ and $v(t) \in a\left(t, u^{\prime}(t)\right)$ for all $t \in(0, T) \backslash N$, from (3.11), we infer that $\widehat{u}(t)=u^{\prime}(t)$ for all $t \in(0, T) \backslash N$. Therefore, we have

$$
\begin{equation*}
u_{n}^{\prime}(t) \longrightarrow u^{\prime}(t) \quad \text { for a.a. } t \in(0, T) \tag{3.12}
\end{equation*}
$$

and from (3.1), also

$$
\begin{equation*}
u_{n}^{\prime} \longrightarrow u^{\prime} \quad \text { weakly in } L^{p}((0, T)) \tag{3.13}
\end{equation*}
$$

From (3.10), we see that

$$
\begin{aligned}
c_{0}\left|u_{n}^{\prime}(t)\right|^{p} \leq & k_{1}(t)+c_{0}\left|u^{\prime}(t)\right|^{p}+\left|u^{\prime}(t)\right|\left(a_{1}(t)+c_{1}\left|u_{n}^{\prime}(t)\right|^{p-1}\right) \\
& +\left|u_{n}^{\prime}(t)\right|\left(a_{1}(t)+c_{1}\left|u^{\prime}(t)\right|^{p-1}\right) .
\end{aligned}
$$

Using Young's inequality with $\varepsilon>0$, we obtain

$$
\begin{align*}
c_{0}\left|u_{n}^{\prime}(t)\right|^{p} \leq & k_{1}(t)+c_{0}\left|u^{\prime}(t)\right|^{p}+a_{1}(t)\left|u^{\prime}(t)\right|+\frac{c_{1}^{p}}{\varepsilon p}\left|u^{\prime}(t)\right|^{p}+\frac{\varepsilon}{p^{\prime}}\left|u_{n}^{\prime}(t)\right|^{p} \\
& +a_{1}(t)\left|u_{n}^{\prime}(t)\right|+\frac{\varepsilon}{p}\left|u_{n}^{\prime}(t)\right|^{p}+\frac{c_{1}^{p^{\prime}}}{\varepsilon p^{\prime}}\left|u^{\prime}(t)\right|^{p} . \tag{3.14}
\end{align*}
$$

If we choose $\varepsilon<c_{0}$ (recall that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$), from (3.14), it follows that the sequence $\left\{\left|u_{n}^{\prime}(\cdot)\right|^{p}\right\} \subseteq L^{1}((0, T))$ is uniformly integrable. Because of (3.12), (3.13) and Vitali's Theorem (see e.g. Gasiński and Papageorgiou [12, Theorem A.2.1, p 715]), we have that

$$
\begin{equation*}
\left\|u_{n}^{\prime}\right\|_{p} \longrightarrow\left\|u^{\prime}\right\|_{p} \tag{3.15}
\end{equation*}
$$

Combining (3.12), (3.13) and (3.15) and using the Kadec-Klee property (see Gasiński and Papageorgiou [12, Remark A.3.11, p722]), we have that

$$
u_{n}^{\prime} \longrightarrow u^{\prime} \quad \text { in } L^{p}((0, T))
$$

so finally (3.3) holds.
We consider the energy functional $\varphi: W_{\text {per }}^{1, p}((0, T)) \longrightarrow \mathbb{R}$, defined by

$$
\varphi(u)=\int_{0}^{T} G\left(t, u^{\prime}(t)\right) \mathrm{d} t-\int_{0}^{T} j(t, u(t)) \mathrm{d} t .
$$

We know that φ is locally Lipschitz (see Gasiński and Papageorgiou [12, Theorem 1.3.10, p 59]).

The next lemma illustrates the partial lack of compactness which characterizes strongly resonant problems.

Lemma 3.4 If hypotheses $H(a)$ and $H(j)_{1}$ hold, then φ satisfies the nonsmooth Cerami condition at any level $c \neq-\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t$.

Proof Let $c \neq-\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t$ and let $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$ be a sequence, such that

$$
\begin{equation*}
\varphi\left(u_{n}\right) \longrightarrow c \quad \text { and } \quad\left(1+\left\|u_{n}\right\|\right) m^{\varphi}\left(u_{n}\right) \longrightarrow 0 . \tag{3.16}
\end{equation*}
$$

Let $w_{n}^{*} \in \partial \varphi\left(u_{n}\right)$ be such that $m^{\varphi}\left(u_{n}\right)=\left\|w_{n}^{*}\right\|_{*}$ for all $n \geq 1$. The existence of such an element follows from the weak lower semicontinuity of the norm functional in $W_{\mathrm{per}}^{1, p}((0, T))^{*}$ and from the weak compactness of $\partial \varphi\left(u_{n}\right) \subseteq W_{\mathrm{per}}^{1, p}((0, T))^{*}$.

Let $I_{G}: L^{p}((0, T)) \longrightarrow \mathbb{R}$ be the integral functional, defined by

$$
I_{G}(y)=\int_{0}^{T} G(t, y(t)) \mathrm{d} t
$$

We know that I_{G} is continuous, convex. Let $D \in \mathcal{L}\left(W_{\text {per }}^{1, p}((0, T)) ; L^{p}((0, T))\right)$ be defined by

$$
D u=\frac{d}{\mathrm{dt}} u
$$

We have

$$
\int_{0}^{T} G\left(t, u^{\prime}(t)\right) \mathrm{d} t=\left(I_{G} \circ D\right)(u), \quad \forall u \in W_{\mathrm{per}}^{1, p}((0, T))
$$

so

$$
\partial\left(I_{G} \circ D\right)(u)=-D^{*} \partial I_{G}\left(u^{\prime}\right)=-\frac{d}{\mathrm{dt}} \partial I_{G}\left(u^{\prime}\right), \quad \forall u \in W_{\mathrm{per}}^{1, p}((0, T))
$$

and finally

$$
\partial\left(I_{G} \circ D\right)(u)=A(u)
$$

(see Gasiński and Papageorgiou [12, Proposition 1.3.15, p 54 and Remark 1.3.6, p 55]). Then

$$
\begin{equation*}
w_{n}^{*}=v_{n}^{*}-u_{n}^{*}, \quad \forall n \geq 1, \tag{3.17}
\end{equation*}
$$

with $v_{n}^{*} \in A\left(u_{n}\right)$ and $u_{n}^{*} \in S_{\partial j\left(\cdot, u_{n}(\cdot)\right)}^{p^{\prime}}$. We claim that the sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$ is bounded. Suppose that this is not true. By passing to a subsequence if necessary, we may assume that

$$
\left\|u_{n}\right\| \longrightarrow+\infty
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$ for all $n \geq 1$. We may assume that

$$
\begin{aligned}
& y_{n} \longrightarrow y \quad \text { weakly in } W_{\mathrm{per}}^{1, p}((0, T)) \\
& y_{n} \longrightarrow y \quad \text { in } C([0, T])
\end{aligned}
$$

(recall that the embedding $W_{\text {per }}^{1, p}((0, T)) \subseteq C([0, T])$ is compact). From the choice of the sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$, we have

$$
\begin{equation*}
\frac{\varphi\left(u_{n}\right)}{\left\|u_{n}\right\|^{p}}=\int_{0}^{T} \frac{G\left(t, u_{n}^{\prime}(t)\right)}{\left\|u_{n}\right\|^{p}} \mathrm{~d} t-\int_{0}^{T} \frac{j\left(t, u_{n}(t)\right)}{\left\|u_{n}\right\|^{p}} \mathrm{~d} t \leq \frac{M_{1}}{\left\|u_{n}\right\|^{p}} \tag{3.18}
\end{equation*}
$$

for some $M_{1}>0$. Because of hypothesis $H(a)(5)$, for almost all $t \in(0, T)$ and all $n \geq 1$, we have

$$
c_{0}\left|u_{n}^{\prime}(t)\right|^{p} \leq G\left(t, u_{n}^{\prime}(t)\right)
$$

so

$$
\begin{equation*}
c_{0}\left|y_{n}^{\prime}(t)\right|^{p} \leq \frac{G\left(t, u_{n}^{\prime}(t)\right)}{\left\|u_{n}\right\|^{p}} . \tag{3.19}
\end{equation*}
$$

Moreover, by virtue of hypothesis $H(j)_{1}(4)$, we can find $M_{2}>0$, such that for almost all $t \in(0, T)$ and all $|\zeta|>M_{2}$, we have

$$
\begin{equation*}
|j(t, \zeta)| \leq \max \left\{\left|j_{+}(t)\right|,\left|j_{-}(t)\right|\right\}+1 . \tag{3.20}
\end{equation*}
$$

On the other hand from hypothesis $H(j)_{1}(3)$ and the mean value theorem for locally Lipschitz functions (see e.g. Gasiński and Papageorgiou [12, Proposition 1.3.14, p53]), we see that for almost all $|\zeta| \leq M_{2}$, we have

$$
\begin{equation*}
|j(t, \zeta)| \leq \beta_{1}(t) \tag{3.21}
\end{equation*}
$$

with $\beta_{1} \in L^{1}((0, T))_{+}$. From (3.20) and (3.21), we conclude that for almost all $t \in(0, T)$ and all $\zeta \in \mathbb{R}$, we have

$$
|j(t, \zeta)| \leq \beta_{2}(t)
$$

with $\beta_{2} \in L^{1}((0, T))_{+}$. So we have

$$
\begin{equation*}
\left|\int_{0}^{T} \frac{j\left(t, u_{n}(t)\right)}{\left\|u_{n}\right\|^{p}} \mathrm{~d} t\right| \leq \frac{\left\|\beta_{2}\right\|_{1}}{\left\|u_{n}\right\|^{p}} \longrightarrow 0 \tag{3.22}
\end{equation*}
$$

Passing to the limit as $n \rightarrow+\infty$ in (3.18) and using (3.19) and (3.22), we obtain

$$
c_{0}\left\|y^{\prime}\right\|_{p}^{p} \leq c_{0} \liminf _{n \rightarrow+\infty}\left\|y_{n}^{\prime}\right\|_{p}^{p} \leq 0
$$

so $y \equiv \xi \in \mathbb{R}$.
If $\xi=0$, then from (3.18) and (3.19), we have

$$
c_{0}\left\|y_{n}^{\prime}\right\|_{p}^{p} \leq \frac{M_{1}}{\left\|u_{n}\right\|^{p}}+\int_{0}^{T} \frac{j\left(t, u_{n}(t)\right)}{\left\|u_{n}\right\|^{p}} \mathrm{~d} t
$$

so

$$
y_{n}^{\prime} \longrightarrow 0 \text { in } L^{p}((0, T))
$$

and thus

$$
y_{n} \longrightarrow 0 \text { in } W_{\operatorname{per}}^{1, p}((0, T)),
$$

a contradiction to the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. So $\xi \neq 0$. Suppose that $\xi>0$. Then

$$
u_{n}(t) \longrightarrow+\infty, \quad \forall t \in(0, T)
$$

In fact we claim that this convergence is uniform in $t \in(0, T)$. To this end let $\delta^{\prime} \in(0, \xi)$. Since $y_{n} \longrightarrow \xi$ in $C([0, T])$, we can find $n_{0}=n_{0}\left(\delta^{\prime}\right) \geq 1$, such that for all $n \geq n_{0}$ and all $t \in(0, T)$, we have

$$
\left|y_{n}(t)-\xi\right|<\delta^{\prime}
$$

so

$$
0<\delta_{1}=\xi-\delta^{\prime} \leq y_{n}(t)
$$

(hence $u_{n}(t)>0$ for all $n \geq n_{0}$ and all $t \in(0, T)$).
Moreover, since $\left\|u_{n}\right\| \longrightarrow+\infty$, for a given $\eta>0$, we can find $n_{1}=n_{1}(\eta) \geq n_{0}$, such that

$$
\left\|u_{n}\right\| \geq \eta>0, \quad \forall n \geq n_{1}
$$

For all $n \geq n_{1}$ and all $t \in(0, T)$, we have

$$
\frac{u_{n}(t)}{\eta} \geq \frac{u_{n}(t)}{\left\|u_{n}\right\|}=y_{n}(t) \geq \delta_{1}>0
$$

so

$$
u_{n}(t) \geq \eta \delta_{1}>0, \quad \forall t \in(0, T), \quad n \geq n_{1}
$$

Because $\eta>0$ was arbitrary, we conclude that

$$
\min _{t \in[0, T]} u_{n}(t) \longrightarrow+\infty
$$

Using this fact in conjunction with hypothesis $H(j)_{1}(4)$, we see that for a given $\varepsilon>0$, we can find $n_{2}=n_{2}(\varepsilon) \geq 1$, such that for almost all $t \in(0, T)$ and all $n \geq n_{2}$, we have

$$
j_{+}(t)-\varepsilon \leq j\left(t, u_{n}(t)\right) \leq j_{+}(t)+\varepsilon
$$

So

$$
\begin{equation*}
\int_{0}^{t} j\left(t, u_{n}(t)\right) \mathrm{d} t \longrightarrow \int_{0}^{T} j_{+}(t) \mathrm{d} t \tag{3.23}
\end{equation*}
$$

Recall that $\varphi\left(u_{n}\right) \longrightarrow c$. For a given $\varepsilon>0$, we can find $n_{3}=n_{3}(\varepsilon) \geq n_{2}$, such that

$$
\left|\varphi\left(u_{n}\right)-c\right| \leq \varepsilon, \quad \forall n \geq n_{3}
$$

so

$$
\begin{equation*}
c-\varepsilon \leq \varphi\left(u_{n}\right)=\int_{0}^{T} G\left(t, u_{n}^{\prime}(t)\right) \mathrm{d} t-\int_{0}^{T} j\left(t, u_{n}(t)\right) \mathrm{d} t \leq c+\varepsilon \tag{3.24}
\end{equation*}
$$

From the choice of the sequence $\left\{u_{n}\right\} \subseteq W_{\text {per }}^{1, p}((0, T))$ (see (3.16) and (3.17)), we have

$$
\left|\left\langle v_{n}^{*}, u_{n}\right\rangle-\int_{0}^{T} u_{n}^{*}(t) u_{n}(t) \mathrm{d} t\right| \leq \varepsilon_{n}
$$

with $\varepsilon_{n} \searrow 0$, so

$$
\begin{equation*}
\left|\int_{0}^{T} v_{n}(t) u_{n}^{\prime}(t) \mathrm{d} t-\int_{0}^{T} u_{n}^{*}(t) u_{n}(t) \mathrm{d} t\right| \leq \varepsilon_{n} \tag{3.25}
\end{equation*}
$$

with $v_{n} \in S_{a\left(\cdot, u_{n}^{\prime}(\cdot)\right)}^{p^{\prime}}$. From the definition of the generalized subdifferential, for almost all $t \in(0, T)$ and all $n \geq 1$, we have

$$
\begin{align*}
u_{n}^{*}(t) u_{n}(t) & \leq j^{0}\left(t, u_{n}(t) ; u_{n}(t)\right) \\
& =\limsup _{z_{m}^{n} \rightarrow u_{n}(t)} \frac{j\left(t, z_{m}^{n}+\varepsilon u_{n}(t)\right)-j\left(t, z_{m}^{n}\right)}{\varepsilon} \tag{3.26}
\end{align*}
$$

Because $u_{n}(t) \longrightarrow+\infty$ (uniformly in $t \in(0, T)$), up to a subsequence, we must have $z_{m(n)}^{n} \longrightarrow+\infty$ as $n \rightarrow+\infty$ and so by virtue of hypothesis $H(j)_{1}(4)$, for a given $\varepsilon>0$, we can find $n_{4}=n_{4}(\varepsilon) \geq 1$, such that

$$
\begin{equation*}
j_{+}(t)-\frac{\varepsilon^{2}}{2} \leq j\left(t, z_{m(n)}^{n}+\varepsilon u_{n}(t)\right) \leq j_{+}(t)+\frac{\varepsilon^{2}}{2}, \quad \forall n \geq n_{4} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{+}(t)-\frac{\varepsilon^{2}}{2} \leq j\left(t, z_{m(n)}^{n}\right) \leq j_{+}(t)+\frac{\varepsilon^{2}}{2}, \quad \forall n \geq n_{4} . \tag{3.28}
\end{equation*}
$$

Using (3.27) and (3.28) in (3.26), we see that for almost all $t \in(0, T)$ and all $n \geq n_{4}$, we have

$$
\left|u_{n}^{*}(t) u_{n}(t)\right| \leq \frac{\varepsilon^{2}}{\varepsilon}=\varepsilon
$$

so

$$
u_{n}^{*}(t) u_{n}(t) \longrightarrow 0 \quad \text { uniformly in } t \in(0, T)
$$

and thus

$$
\begin{equation*}
\int_{0}^{T} u_{n}^{*}(t) u_{n}(t) \mathrm{d} t \longrightarrow 0 \tag{3.29}
\end{equation*}
$$

Using (3.29) in (3.25), we obtain

$$
\begin{equation*}
\int_{0}^{T} v_{n}(t) u_{n}^{\prime}(t) \mathrm{d} t \longrightarrow 0 \tag{3.30}
\end{equation*}
$$

Because of hypothesis $H(a)(4)$, we have that

$$
\int_{0}^{T} v_{n}(t) u_{n}^{\prime}(t) \mathrm{d} t \leq p \int_{0}^{T} G\left(t, u_{n}^{\prime}(t)\right) \mathrm{d} t
$$

and from (3.30), we have

$$
\begin{equation*}
0 \leq \liminf _{n \rightarrow+\infty} \int_{0}^{T} G\left(t, u_{n}^{\prime}(t)\right) \mathrm{d} t . \tag{3.31}
\end{equation*}
$$

On the other hand since $v_{n}(t) \in a\left(t, u_{n}^{\prime}(t)\right)=\partial G\left(t, u_{n}^{\prime}(t)\right)$ for almost all $t \in(0, T)$, from the definition of the convex subdifferential, we have

$$
v_{n}(t) u_{n}^{\prime}(t) \geq G\left(t, u_{n}^{\prime}(t)\right) \quad \text { for a.a. } t \in(0, T)
$$

so from (3.30), we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{0}^{T} G\left(t, u_{n}^{\prime}(t)\right) \mathrm{d} t \leq 0 \tag{3.32}
\end{equation*}
$$

From (3.31) and (3.32), it follows that

$$
\begin{equation*}
\int_{0}^{T} G\left(t, u_{n}^{\prime}(t)\right) \mathrm{d} t \longrightarrow 0 \tag{3.33}
\end{equation*}
$$

Then returning to (3.24), passing to the limit as $n \rightarrow+\infty$ and using (3.23) and (3.33), we obtain

$$
c-\varepsilon \leq-\int_{0}^{T} j_{+}(t) \mathrm{d} t \leq c+\varepsilon
$$

Let $\varepsilon \searrow 0$, to conclude that $c=-\int_{0}^{T} j_{+}(t) \mathrm{d} t$, a contradiction. This proved that the sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$ is bounded. Thus by passing to a subsequence if necessary, we may assume that

$$
\begin{array}{ll}
u_{n} \longrightarrow u & \text { weakly in } W_{\mathrm{per}}^{1, p}((0, T)), \\
u_{n} \longrightarrow u & \text { in } C([0, T]) .
\end{array}
$$

From the choice of the sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{\text {per }}^{1, p}((0, T))$, we have

$$
\left|\left\langle v_{n}^{*}, u_{n}-u\right\rangle-\int_{0}^{T} u_{n}^{*}(t)\left(u_{n}-u\right)(t) \mathrm{d} t\right| \leq \varepsilon_{n}
$$

with $\varepsilon_{n} \searrow 0$. Note that $\int_{0}^{T} u_{n}^{*}(t)\left(u_{n}-u\right)(t) \mathrm{d} t \longrightarrow 0$ (see hypothesis $\left.H(j)_{1}(3)\right)$. So it follows that

$$
\left\langle v_{n}^{*}, u_{n}-u\right\rangle \longrightarrow 0 .
$$

Invoking Lemma 3.3, we obtain that

$$
u_{n} \longrightarrow u \quad \text { in } W_{\mathrm{per}}^{1, p}((0, T))
$$

The argument is similar if we assume that $\xi<0$. Now instead of j_{+}, we use j_{-}. So finally we have that φ satisfies the nonsmooth Cerami condition at any level $c \neq-\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t$.

Now we are ready for our first multiplicity result.
Theorem 3.5 If hypotheses $H(a)$ and $H(j)_{1}$ hold, then problem (1.1) has at least two nontrivial solutions $u_{0}, y_{0} \in C_{\text {per }}^{1}([0, T])$.

Proof By virtue of hypotheses $H(a)(5), H(j)_{1}(3)$ and (4), the energy functional φ is bounded below. Consider the open set

$$
U_{+}=\left\{u \in W_{\mathrm{per}}^{1, p}((0, T)): \int_{0}^{T}|u(t)|^{p-2} u(t) \mathrm{d} t>0\right\}
$$

and let $m_{+}=\inf _{U_{+}} \varphi$. Because $G(t, 0)=0$ for all $t \in(0, T)$ and $j(t, 0)=0$ for almost all $t \in(0, T)$ (see Remark 3.2), we have

$$
m_{+} \leq \varphi(0)=0
$$

If $m_{+}=\varphi(0)=0$, then from hypothesis $H(j)_{1}(5)$ (the local sign condition), for every $\xi \in(0, \delta)$, we have

$$
\varphi(\xi)=m_{+} .
$$

Note that for every $\xi \in(0, \delta)$, we have $\xi \in \operatorname{int} W_{\text {per }}^{1, p}((0, T))_{+}$and so ξ is a local minimizer of φ, hence $0 \in \partial \varphi(\xi)$. Therefore we have produced a continuum of nonzero, constant solutions of problem (1.1).

Next suppose that $m_{+}<0=\varphi(0)$. Because $-\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t \geq 0$ (see hypothesis $\left.H(j)_{1}(4)\right)$, from Lemma 3.4, it follows that φ satisfies the nonsmooth Cerami condition at level m_{+}. Let $\varphi_{+}: W_{\operatorname{per}}^{1, p}((0, T)) \longrightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ be defined by

$$
\varphi_{+}(u)= \begin{cases}\varphi(u), & \text { if } u \in \bar{U}_{+} \\ +\infty, & \text { otherwise }\end{cases}
$$

Evidently φ_{+}is proper, lower semicontinuous and bounded below. Using Theorem 2.1, we can find a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq U_{+}$, such that

$$
\varphi_{+}\left(u_{n}\right)=\varphi\left(u_{n}\right) \searrow m_{+}
$$

and

$$
\varphi_{+}\left(u_{n}\right) \leq \varphi_{+}(y)+\frac{\left\|u_{n}-y\right\|}{n\left(1+\left\|u_{n}\right\|\right)}, \quad \forall y \in W_{\mathrm{per}}^{1, p}((0, T)) .
$$

Let $\lambda>0$ and $h \in W_{\text {per }}^{1, p}((0, T))$ and set $y=u_{n}+\lambda h$. Since $u_{n} \in U_{+}$, we can find $\widehat{\delta}>0$, small enough so that

$$
y=u_{n}+\lambda h \in \bar{U}_{+}, \quad \forall \lambda \in(0, \widehat{\delta}] .
$$

Therefore, we have

$$
-\frac{\lambda\|h\|}{n\left(1+\left\|u_{n}\right\|\right)} \leq \varphi_{+}\left(u_{n}+\lambda h\right)-\varphi_{+}\left(u_{n}\right)=\varphi\left(u_{n}+\lambda h\right)-\varphi\left(u_{n}\right)
$$

so

$$
-\frac{\|h\|}{n\left(1+\left\|u_{n}\right\|\right)} \leq \frac{\varphi\left(u_{n}+\lambda h\right)-\varphi\left(u_{n}\right)}{\lambda}, \quad \forall \lambda \in(0, \widehat{\delta}]
$$

and thus

$$
-\frac{\|h\|}{n\left(1+\left\|u_{n}\right\|\right)} \leq \varphi^{0}\left(u_{n} ; h\right), \quad \forall h \in W_{\mathrm{per}}^{1, p}((0, T)), \quad n \geq 1 .
$$

Using Theorem 2.2, there exists $w_{n}^{*} \in W_{\text {per }}^{1, p}((0, T))^{*}$ with $\left\|w_{n}^{*}\right\|_{*}=1$, such that

$$
\left\langle w_{n}^{*}, h\right\rangle \leq n\left(1+\left\|u_{n}\right\|\right) \varphi^{0}\left(u_{n} ; h\right), \quad \forall h \in W_{\mathrm{per}}^{1, p}((0, T))
$$

so

$$
\frac{w_{n}^{*}}{n\left(1+\left\|u_{n}\right\|\right)} \in \partial \varphi\left(u_{n}\right), \quad \forall n \geq 1
$$

and thus

$$
\left(1+\left\|u_{n}\right\|\right) m^{\varphi}\left(u_{n}\right) \leq \frac{1}{n} \longrightarrow 0
$$

Thus by Lemma 3.4, we can say that

$$
u_{n} \longrightarrow u_{0} \quad \text { in } W_{\mathrm{per}}^{1, p}((0, T))
$$

We have that $u_{0} \in \bar{U}_{+}$and

$$
m_{+}=\varphi_{+}\left(u_{0}\right)=\varphi\left(u_{0}\right)
$$

Suppose that $u_{0} \in \partial U_{+}$. Then

$$
\int_{0}^{T}\left|u_{0}(t)\right|^{p-2} u_{0}(t) \mathrm{d} t=0
$$

Moreover, from hypothesis $H(a)(5)$ and $H(j)_{1}(6)$ and the variational characterization of $\lambda_{1}>0$ (see (2.2)), we have that

$$
\begin{aligned}
0>m_{+} & =\int_{0}^{T} G\left(t, u_{0}^{\prime}(t)\right) \mathrm{d} t-\int_{0}^{T} j\left(t, u_{0}(t)\right) \mathrm{d} t \\
& \geq c_{0}\left\|u_{0}^{\prime}\right\|_{p}^{p}-c_{0} \lambda_{1}\left\|u_{0}\right\|_{p}^{p} \\
& \geq c_{0}\left\|u_{0}^{\prime}\right\|_{p}^{p}-c_{0}\left\|u_{0}^{\prime}\right\|_{p}^{p}=0
\end{aligned}
$$

a contradiction. So $u_{0} \in U_{+}$. Hence $u_{0} \neq 0$ is a local minimizer of φ and for this reason we have that $0 \in \partial \varphi\left(u_{0}\right)$. This inclusion implies that we can find $v_{0}^{*} \in A\left(u_{0}\right)$ and $u_{0}^{*} \in S_{\partial j\left(\cdot, u_{0}(\cdot)\right)}^{p^{\prime}}$, such that $v_{0}^{*}=u_{0}^{*}$. By definition $v_{0}^{*}=-v_{0}^{\prime}$ with $v_{0} \in S_{a\left(\cdot, u_{0}^{\prime}(\cdot)\right)}^{p^{\prime}}$. Let $\langle\cdot, \cdot\rangle$ be the duality brackets for the pair $\left(W_{\mathrm{per}}^{1, p}((0, T)), W_{\text {per }}^{1, p}((0, T))^{*}\right)$. For every $\vartheta \in C_{c}^{1}((0, T))$, we have

$$
\left\langle v_{0}^{*}, \vartheta\right\rangle=\int_{0}^{T} u_{0}^{*}(t) \vartheta(t) \mathrm{d} t
$$

so

$$
\int_{0}^{T} v_{0}(t) \vartheta^{\prime}(t) \mathrm{d} t=\int_{0}^{T} u_{0}^{*}(t) \vartheta(t) \mathrm{d} t
$$

and thus

$$
\left\langle-v_{0}^{\prime}, \vartheta\right\rangle=\left\langle u_{0}^{*}, \vartheta\right\rangle .
$$

Because the embedding $C_{c}^{1}((0, T)) \subseteq W_{\text {per }}^{1, p}((0, T))$ is dense, from the last equality and since $\vartheta \in C_{c}^{1}((0, T))$ was arbitrary, we infer that

$$
\begin{align*}
& v_{0}^{*}(t)=-v_{0}^{\prime}(t)=u_{0}^{*}(t) \quad \text { for a.a. } t \in(0, T), \tag{3.34}\\
& u_{0}(0)=u_{0}(T)
\end{align*}
$$

with $v_{0} \in S_{a\left(\cdot, u_{0}^{\prime}(\cdot)\right)}^{p^{\prime}}, u_{0}^{*} \in S_{\partial j\left(\cdot, u_{0}(\cdot)\right)}^{p^{\prime}}$. Evidently $v_{0} \in W^{1, p^{\prime}}((0, T)) \subseteq C([0, T])$ and we have

$$
u_{0}^{\prime}(t)=a^{-1}\left(t, v_{0}(t)\right), \quad \forall t \in(0, T) .
$$

By virtue of hypothesis $H(a)(2)$, the function $(t, v) \longmapsto a^{-1}(t, v)$ is single valued. We claim that this map is continuous. To this end suppose that $\left\{\left(t_{n}, v_{n}\right)\right\}_{n \geq 1} \subseteq(0, T) \times \mathbb{R}$ is a sequence, such that

$$
\left(t_{n}, v_{n}\right) \longrightarrow\left(t, v_{0}\right) \quad \text { in }(0, T) \times \mathbb{R}
$$

and

$$
y_{n}=a^{-1}\left(t_{n}, v_{n}\right), \quad \forall n \geq 1 .
$$

From the definition of the convex subdifferential, hypothesis $H(a)(5)$ and since $G(t, 0)=0$ for all $t \in(0, T)$, we have

$$
v_{n} y_{n} \geq G\left(t_{n}, y_{n}\right) \geq c_{0}\left|y_{n}\right|^{p}
$$

so

$$
\left|y_{n}\right|^{p-1} \leq \frac{1}{c_{0}}\left|v_{n}\right| \quad \forall n \geq 1 .
$$

It follows that the sequence $\left\{y_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and, passing to a subsequence if necessary, we may assume that

$$
y_{n} \longrightarrow y \quad \text { in } \mathbb{R}
$$

Again form the definition of the convex subdifferential, we have that

$$
v_{n}\left(z-y_{n}\right) \leq G\left(t_{n}, z\right)-G\left(t_{n}, y_{n}\right), \quad \forall z \in \mathbb{R}
$$

so

$$
v_{0}(z-y) \leq G(t, z)-G(t, y), \quad \forall z \in \mathbb{R}
$$

thus

$$
v_{0} \in \partial G(t, y)=a(t, y)
$$

and so $y=a^{-1}\left(t, v_{0}\right)$. This proves that indeed the map $(t, v) \longmapsto a^{-1}(t, v)$ is continuous on $(0, T) \times \mathbb{R}$. Hence the map $t \longmapsto a^{-1}\left(t, v_{0}(t)\right)=u_{0}^{\prime}(t)$ is continuous and so $u_{0} \in C^{1}([0, T])$. Using integration by parts, for every $\eta \in W_{\mathrm{per}}^{1, p}((0, T))$, we have

$$
\left\langle v_{0}^{*}, \eta\right\rangle=\int_{0}^{T} v_{0}(t) \eta^{\prime}(t) \mathrm{d} t=\int_{0}^{T} u_{0}^{*}(t) \eta(t) \mathrm{d} t
$$

with $v_{0} \in S_{a\left(\cdot, u_{0}^{\prime}(\cdot)\right)}^{p^{\prime}}$, so

$$
v_{0}(T) \eta(T)-v_{0}(0) \eta(0)-\int_{0}^{T} v_{0}^{\prime}(t) \eta(t) \mathrm{d} t=\int_{0}^{T} u_{0}^{*}(t) \eta(t) \mathrm{d} t
$$

and thus

$$
v_{0}(0) \eta(0)=v_{0}(T) \eta(T)
$$

Since $\eta \in W_{\text {per }}^{1, p}((0, T))$ was arbitrary, it follows that $v_{0}(0)=v_{0}(T)$. Then because of hypothesis $H(a)(2)$, we have that

$$
u_{0}^{\prime}(0)=a^{-1}\left(0, v_{0}(0)\right)=a^{-1}\left(T, v_{0}(T)\right)=u_{0}^{\prime}(T)
$$

so $u_{0} \in C_{\mathrm{per}}^{1}([0, T])$ is a nontrivial solution for problem (1.1).
Considering the open set $U_{-} \subseteq W_{\text {per }}^{1, p}((0, T))$, defined by

$$
U_{-}=\left\{u \in W_{\operatorname{per}}^{1, p}((0, T)): \int_{0}^{T}|u(t)|^{p-2} u(t) \mathrm{d} t<0\right\}
$$

and arguing as before (with U_{+}replaced by U_{-}), we obtain another solution $y_{0} \in U_{-}$ of (1.1), with $y_{0} \neq 0, y_{0} \neq u_{0}$.

This way we have produced two distinct nonzero solutions for problem (1.1).

Remark 3.6 An example of a nonsmooth function satisfying hypotheses $H(j)_{1}$ is the following (for simplicity we drop the t-dependence):

$$
j(\zeta)= \begin{cases}e c_{0} \lambda_{1} e^{\zeta}, & \text { if } \zeta<-1 \\ c_{0} \lambda_{1}|\zeta|^{p}, & \text { if }|\zeta| \leq 1, \\ \frac{c_{0} \lambda_{1}}{\sqrt{\zeta}}, & \text { if } \zeta>1\end{cases}
$$

Another function satisfying hypotheses $H(j)_{1}$ is the following:

$$
j(\zeta)= \begin{cases}\arctan (\zeta+1), & \text { if } \zeta<-1, \\ 0, & \text { if } \zeta \in[-1,0], \\ \frac{c_{0} \lambda_{1} \zeta^{p}}{a^{\zeta}}, & \text { if } \zeta>0\end{cases}
$$

with $a>1$.

4 Existence of three solutions

We can guarantee the existence of three solutions, by modifying our hypotheses on the nonsmooth potential. More precisely our new hypotheses on j are the following.
$H(j)_{2} j:(0, T) \times \mathbb{R} \longrightarrow \mathbb{R}$ is a function, such that
(1) for every $\zeta \in \mathbb{R}$, the function $t \longrightarrow j(t, \zeta)$ is measurable;
(2) for almost all $t \in(0, T)$, the function $\zeta \longmapsto j(t, \zeta)$ is locally Lipschitz with $L^{p^{\prime}}((0, T))_{+}$-Lipschitz constant;
(3) for every $M>0$, there exists $\widehat{a}_{M} \in L^{1}((0, T))_{+}$, such that for almost all $t \in(0, T)$, all $|\zeta| \leq M$ and all $u^{*} \in \partial j(t, \zeta)$, we have $\left|u^{*}\right| \leq \widehat{a}_{M}(t)$;
(4) there exist $j_{ \pm} \in L^{1}((0, T))$, such that

$$
\lim _{\zeta \rightarrow \pm \infty} j(t, \zeta)=j_{ \pm}(t),
$$

uniformly for almost all $t \in(0, T)$;
(5) for almost all $t \in(0, T)$ and all $\zeta \in \mathbb{R}$, we have

$$
j(t, \zeta) \leq c_{0} \lambda_{1}|\zeta|^{p}
$$

with $c_{0}>0$ as in hypothesis $H(a)(5)$ and $\lambda_{1}>0$ being the first nonzero eigenvalue of the negative p-Laplacian with periodic boundary condition;
(6) there exist $\xi_{-}<0<\xi_{+}$such that

$$
\int_{0}^{T} j\left(t, \xi_{ \pm}\right) \mathrm{d} t>0>\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t
$$

Remark 4.1 Note that the strong resonance hypothesis $H(j)_{2}(4)$ is still in effect. We no longer impose the local sign condition (see hypothesis $H(j)_{1}(5)$). Instead we employ hypothesis $H(j)_{2}(6)$.

A careful reading of the proof of Lemma 3.4, reveals that the result remains valid in the present situation, namely the energy functional φ satisfies the nonsmooth Cerami condition at any level $c \neq-\int_{0}^{T} j_{ \pm}(t) \mathrm{d} t$. Then we can prove the following three solutions theorem.

Theorem 4.2 If hypotheses $H(a)$ and $H(j)_{2}$ hold, then problem (1.1) has at least three solutions $u_{0}, y_{0}, z_{0} \in C_{\mathrm{per}}^{1}([0, T])$.

Proof Using the sets $U_{ \pm} \subseteq W_{\text {per }}^{1, p}((0, T))$, as in the proof of Theorem 3.5, we can produce two nontrivial solutions $u_{0}, y_{0} \in W_{\mathrm{per}}^{1, p}((0, T)), u_{0} \in U_{+}, y_{0} \in U_{-}$. Note that in the present setting, it cannot happen that $m_{ \pm}=0$, since

$$
m_{+} \leq-\int_{0}^{T} j\left(t, \xi_{+}\right) \mathrm{d} t<0 \quad \text { and } \quad m_{-} \leq-\int_{0}^{T} j\left(t, \xi_{-}\right) \mathrm{d} t<0
$$

(see hypothesis $\left.H(j)_{2}(6)\right)$.
Next let

$$
\begin{aligned}
E_{1} & =\left\{\xi_{+}, \xi_{-}\right\} \\
E & =\left[\xi_{-}, \xi_{+}\right]==\left\{u \in W_{\mathrm{per}}^{1, p}((0, T)): \xi_{-} \leq u(t) \leq \xi_{+} \text {for all } t \in(0, T)\right\}, \\
D & =\left\{u \in W_{\operatorname{per}}^{1, p}((0, T)): \int_{0}^{T}|u(t)|^{p-2} u(t) \mathrm{d} t=0\right\} .
\end{aligned}
$$

We claim that E_{1} and D link in $W_{\text {per }}^{1, p}((0, T))$. Indeed, first note that $E_{1} \cap D=\emptyset$. Next let $\vartheta \in C\left(E ; W_{\operatorname{per}}^{1, p}((0, T))\right)$, with $\left.\vartheta\right|_{E_{1}}=\left.i d\right|_{E_{1}}$, i.e. $\vartheta\left(\xi_{-}\right)=\xi_{-}$and $\vartheta\left(\xi_{+}\right)=\xi_{+}$. Let $\psi: W_{\text {per }}^{1, p}((0, T)) \longrightarrow \mathbb{R}$ be defined by

$$
\psi(u)=\int_{0}^{T}|u(t)|^{p-2} u(t) \mathrm{d} t .
$$

Then $\psi \in C\left(W_{\mathrm{per}}^{1, p}((0, T))\right)$ and so $\psi \circ \vartheta \in C(E)$. We have

$$
(\psi \circ \vartheta)\left(\xi_{-}\right)=\psi\left(\xi_{-}\right)<0<\psi\left(\xi_{+}\right)=(\psi \circ \vartheta)\left(\xi_{+}\right) .
$$

Evidently E is connected. Hence so is $(\psi \circ \vartheta)(E)$ and so we can find $u \in E$, such that $(\psi \circ \vartheta)(u)=0$. We have $\psi(\vartheta(u))=0$, which means that $\vartheta(u) \in D$. Therefore $\vartheta(E) \cap D \neq \emptyset$, which proves that the two sets E_{1} and D link in $W_{\text {per }}^{1, p}((0, T))$. Applying Theorem 2.3, we obtain $z_{0} \in W_{\text {per }}^{1, p}((0, T))$, such that

$$
\varphi\left(z_{0}\right) \geq \inf _{D} \varphi=0>m_{ \pm} \quad \text { and } \quad 0 \in \partial \varphi\left(z_{0}\right) .
$$

Since $m_{+}=\varphi\left(u_{0}\right), m_{-}=\varphi\left(y_{0}\right)$, we see that $z_{0} \neq u_{0}$ and $z_{0} \neq y_{0}$ and from the inclusion $0 \in \partial \varphi\left(z_{0}\right)$, it follows that $z_{0} \in C_{\text {per }}^{1}([0, T])$ is a third solution of problem (1.1).

Remark 4.3 A nonsmooth potential satisfying hypothesis $H(j)_{2}$ is given by the following function (again for simplicity we drop the t-dependence):

$$
j(\zeta)=\left\{\begin{array}{lll}
\frac{2 c_{0} \lambda_{1}}{\sqrt{|\zeta|}}-c_{0} \lambda_{1}, & \text { if } \quad \zeta<-1, \\
c_{0} \lambda_{1}|\zeta|^{p}, & \text { if } \quad \zeta \in[-1,0], \\
\zeta \ln \zeta, & \text { if } \quad \zeta \in(0,1], \\
\frac{c \ln \zeta}{\zeta}-\arctan (\zeta-1), & \text { if } \quad \zeta>1
\end{array}\right.
$$

with $c>1$.

References

1. Adly S., Motreanu, D.: Periodic solutions for second-order differential equations involving nonconvex superpotentials. J. Global Optim. 17, 9-17 (2000)
2. Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlinear Anal. 7, 981-1012 (1983)
3. Cerami G.: Un criterio di esistenza per i punti critici su varietá illimitate. Rend. Accad. Sci. Let. Ist. Lombardo, 112, 332-336 (1978)
4. Chang, K.-C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102-129 (1981)
5. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983).
6. Dang, H., Oppenheimer, S.F.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, 35-48 (1996)
7. del Pino, M.A., Manásevich, R.F., Murúa, A.E.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Anal. 18, 79-92 (1992)
8. Denkowski, Z., Gasiński, L., Papageorgiou, N.S.: Existence of positive and of multiple solutions for nonlinear periodic problems. Nonlinear Anal. to appear.
9. Fabry, C., Fayyad, D.: Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Ist. Mat. Univ. Trieste. 24, 207-227 (1992)
10. Gasiński, L., Papageorgiou, N.S.: A Multiplicity result for nonlinear second order periodic equations with nonsmooth potential. Bull. Belg. Math. Soc. 9, 245-258 (2002)
11. Gasiński, L., Papageorgiou, N.S.: On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential. Proc. Edinburgh Math. Soc. 46, 229-249 (2003)
12. Gasiński L., Papageorgiou N.S.: Nonsmooth critical Point Theory and Nonlinear Boundary Value Problems. Chapman \& Hall/CRC, Boca Raton (2005).
13. Guo, Z.M.: Boundary value problems for a class of quasilinear ordinary differential equations. Diff. Integral Eq. 6, 705-719 (1993)
14. Kourogenis, N.C., Papageorgiou, N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. Ser. A 69, 245-271 (2000)
15. Manásevich, R.F., Mawhin, J.: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Diff. Eq. 145, 367-393 (1998)
16. Mawhin, J.: Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian. Nonlinear Anal. 40, 497-503 (2000)
17. Mawhin, J.: Periodic solutions of systems with p-Laplacian-like operators. In: Nonlinear Analysis and Its Applications to Differential Equations (Lisbon 1998), vol. 43 of Progress in Nonlinear Differential Equations and Their Applications, pp. 37-63, Birkhäuser Verlag, Boston, MA (2001)
18. Motreanu, D., RPǎdulescu, V.D.: Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer, Dordrecht, (2003).
19. Papageorgiou, E.H., Papageorgiou, N.S.: Two nontrivial solutions for quasilinear periodic problems. Proc. Amer. Math. Soc. 132, 429-434 (2004)
20. Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré. Anal. Non Lineaire. 3, 77-109 (1986)

[^0]: L. Gasiński (\boxtimes)

 Institute of Computer Science, Jagiellonian University, ul. Nawojki 11, 30072, Kraków, Poland e-mail: leszgasi@virgo.ii.uj.edu.pl

