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Abstract In this paper, we study the existence of multiple solutions for nonlinear
scalar periodic problems at resonance with p-Laplacian-like operator. Using the Eke-
land variational principle a two-solution theorem is obtained and using also a local
linking theorem a three-solution theorem is proved.

Keywords Periodic problems · Clarke subdifferential · Resonance · p-Laplacian-like
operator · Local linking

2000 AMS subject classification 49J40 · 34B15 · 34C25

1 Introduction

In this paper, we prove the existence of multiple solutions for the following nonlinear
periodic problem:

(
a(t, u′(t))

)′ + ∂j(t, u(t)) � 0 for a.a. t ∈ (0, T),
u(0) = u(T), u′(0) = u′(T). (1.1)

Here (t, y) �−→ a(t, y) is a set-valued map and ∂j(t, ζ ) is the generalized subdifferen-
tial of a generally nonsmooth locally Lipschitz potential ζ �−→ j(t, ζ ). Let p ∈ (1, +∞)

and consider the Sobolev space

W1,p
per((0, T)) = {

u ∈ W1,p((0, T)) : u(0) = u(T)
}
.

Recall that W1,p((0, T)) is embedded into C([0, T]) and so the pointwise evaluation
at t = 0 and t = T make sense. For a given u ∈ W1,p

per((0, T)), the multivalued term
(
a(t, u′(t))

)′ is interpreted as follows:
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(
a(t, u′(t))

)′ = {
v′ ∈ Lp′

((0, T)), v(t) ∈ a(t, u′(t)) for a.a. t ∈ (0, T)
}
,

where 1
p + 1

p′ = 1. Here derivative v′ is understood in the sense of distributions. By a

solution of problem (1.1) we mean a function u ∈ C1([0, T]), such that

v′(t) = u∗(t) for a.a. t ∈ (0, T)

with v′ ∈ (
a(·, u′(·)))′ and u∗ ∈ Lp′

((0, T)), u∗(t) ∈ ∂j(t, u(t)) for almost all t ∈ (0, T).
Our hypotheses on the set-valued map a(t, y), include as a special case the scalar

p-Laplacian differential operator. Recently there has been increasing interest for sec-
ond-order scalar periodic differential equations involving the p-Laplacian differential
operator. We mention the works of Dang and Oppenheimer [6], Denkowski et al.
[8], Del Pino et al. [7], Fabry and Fayyad [9], Gasiński and Papageorgiou [10,11],
Guo [13] and Papageorgiou and Papageorgiou [19]. Most of the aforementioned
works prove existence theorems. Multiplicity results were proved only by Del Pino
et al., Denkowski et al., Gasinski-Papageorgiou and Papageorgiou–Papageorgiou.
In all these works the differential operator is the scalar p-Laplacian and the first
and third assume a smooth potential (i.e. j(t, ·) ∈ C1(R)), while in Gasiński–Papa-
georgiou the potential j(t, ·) is in general nonsmooth. In Del Pino et al. the method
of the proof uses degree theory and the time map. In Gasiński–Papageorgiou and
Papageorgiou–Papageorgiou, the approach is variational using local linking
(Gasiński–Papageorgiou) or the so-called second deformation theorem
(Papageorgiou–Papageorgiou). All these works prove the existence of two solutions.
For other periodic multiple solutions of hemivariational inequalities, we refer to Adly
and Motreanu [1] and Motreanu and Rǎdulescu [18].

Our approach in the paper is variational and uses the critical point theory for locally
Lipschitz functions (see Chang [4] and Kourogenis and Papageorgiou [14]). We also
prove a “three solution theorem”. This is done for a so-called “strongly resonant”
problem (terminology coined by Bartolo et al. [2]). None of the previous works men-
tioned above examined such problems. The main difficulty that such problems exhibit
is a partial lack of compactness (see Lemma 3.4 below).

In the next section, we recall basic definitions and notions needed in what follows.
Section 3 contains the theorem on the existence of two solutions of problem (1.1). In
Sect. 4 we proof the theorem on the existence of there solutions of problem (1.1).

2 Mathematical background

Let X be a Banach space and X∗ its topological dual. By ‖ · ‖ we denote the norm
in X, by ‖ · ‖∗ the norm in X∗, and by 〈·, ·〉 the duality brackets for the pair (X, X∗).
A function ϕ : X �−→ R is said to be locally Lipschitz, if for every x ∈ X, there
exists a neighbourhood U of x and a constant k > 0 (depending on U), such that
|ϕ(z) − ϕ(y)| ≤ k‖z − y‖ for all z, y ∈ U. It is well known that a convex, lower semi-
continuous and proper (i.e. not identically +∞) function g: X �−→ R = R ∪ {+∞} is
locally Lipschitz in the interior of its effective domain domg = {x ∈ X : g(x) < +∞}.
For a locally Lipschitz function ϕ : X �−→ R, we define the generalized directional
derivative at x ∈ X in the direction h ∈ X, by
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ϕ0(x; h) = lim sup
x′ → x
t ↘ 0

ϕ(x′ + th)− ϕ(x′)
t

.

The function X � h �−→ ϕ0(x; h) ∈ R is sublinear, continuous and so from the
Hahn–Banach theorem it follows that ϕ0(x; ·) is the support function of a nonempty,
convex and w∗-compact set, defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.
The set ∂ϕ(x) is called generalized or Clarke subdifferential of ϕ at x. If ϕ : X �−→ R

is also convex, then the subdifferential of ϕ in the sense of convex analysis coincides
with the generalized subdifferential introduced above. If ϕ is strictly differentiable at
x (in particular if ϕ is continuously Gâteaux differentiable at x), then ∂ϕ(x) = {ϕ′(x)}.
If ϕ,ψ : X �−→ R are locally Lipschitz functions, then ∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x)
and ∂(tϕ)(x) = t∂ϕ(x) for all t ∈ R and all x ∈ X.

Let ϕ: X �−→ R be a locally Lipschitz function on a Banach space X. A point x ∈ X
is said to be a critical point of ϕ, if 0 ∈ ∂ϕ(x). If x ∈ X is a critical point of ϕ, then the
value c = ϕ(x) is called a critical value of ϕ. It is easy to see that, if x ∈ X is a local
extremum of ϕ, then 0 ∈ ∂ϕ(x). Moreover, the multifunction X � x �−→ ∂ϕ(x) ∈ 2X∗

is upper semicontinuous, where the space X∗ is equipped with the w∗-topology, i.e.
for any w∗-open set U ⊆ X∗, the set {x ∈ X : ∂ϕ(x) ⊆ U} is open in X. For more
details on the generalized subdifferential we refer to the book of Clarke [5, Chap. 2].

In the classical (smooth) critical point theory, crucial role plays a compactness type
condition, known as the Palais–Smale condition. When the function is only locally
Lipschitz, this condition takes the following form (introduced by Chang [4, Definition
2, p 113])

A locally Lipschitz function ϕ : X �−→ R satisfies the nonsmooth Palais-Smale
condition, if any sequence {xn}n≥1 ⊆ X such that

sup{ϕ(xn) : n ≥ 1} < +∞
and

mϕ(xn) = inf{‖x∗‖∗ : x∗ ∈ ∂ϕ(xn)} −→ 0 as n → +∞,

has a strongly convergent subsequence.

If ϕ ∈ C1(X), then ∂ϕ(xn) = {ϕ′(xn)} and so we see that the above definition of the
Palais–Smale condition coincides with the classical one.

We will also use a weaker form of the Palais–Smale condition, which for the smooth
functions was first introduced by Cerami [3]. In our nonsmooth setting this condition
takes the following form

A locally Lipschitz function ϕ : X �−→ R satisfies the nonsmooth Cerami
condition, if any sequence {xn}n≥1 ⊆ X such that

sup{ϕ(xn) : n ≥ 1} < +∞
and

(1 + ‖xn‖)mϕ(xn) −→ 0 as n → +∞,

has a strongly convergent subsequence.
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In our hypotheses, we will use the first nonzero eigenvalue λ1 of the negative
p-Laplacian −�pu = − (|u′|p−2u′)′

with periodic boundary condition. So we consider
the following quasilinear eigenvalue problem:

− (|u′(t)|p−2u′(t)
)′ = λ|u(t)|p−2u(t) for a.a. t ∈ (0, T)

u(0) = u(T), u′(0) = uv(T).
(2.1)

It is well-known that λ0 = 0 is an eigenvalue of (2.1) and is simple and isolated. So, if
λ1 = inf{λ > 0 : λis an eigenvalue of −�p}, then λ1 > 0 and

‖u′‖p
p ≥ λ1‖u‖p

p, ∀u ∈ V, (2.2)

where V = {
u ∈ W1,p

per((0, T)) :
∫ T

0 |u(t)|p−2u(t)dt = 0
}

(see Mawhin [17, Corollary
9.3, p 60]).

We will use the generalized Ekeland variational principle (see e.g. Gasiński and
Papageorgiou [12, Corollary 1.4.7, p 91]), in the following form

Theorem 2.1 If (X, dX) is a complete metric space, ϕ : X −→ R is proper, lower semi-
continuous and bounded below, ε, λ > 0 and x0 ∈ X is such that

ϕ(x0) ≤ inf
X
ϕ + ε,

then there exists xλ ∈ X, such that

ϕ(xλ) ≤ ϕ(x0), d(xλ, x0) ≤ λ,

ϕ(xλ) ≤ ϕ(x)+ ε

λ
d(x, xλ), ∀x ∈ X.

The next result is due to Szulkin [20, Lemma 3.1, p 81].

Theorem 2.2 If X is a Banach space, χ: X −→ R = R ∪ {+∞} is a lower semicontinu-
ous, convex function with χ(0) = 0 and

−‖h‖X ≤ χ(h), ∀h ∈ X,

then there exists u∗ ∈ X∗, such that ‖u∗‖X∗ ≤ 1 and

〈u∗, h〉 ≤ χ(h), ∀h ∈ X.

In the three-solution result we will use the notion of linking, which plays a crucial
role in critical point theory (classical and nonsmooth alike). Suppose that X is a Haus-
dorff topological space and E1 and D are nonempty subsets of X. We say that the sets
E1 and D link (homotopically) in X if E1 ∩ D = ∅ and there exists a set E ⊆ X, such
that E1 ⊆ E and for any continuous function ϑ : E −→ X, such that ϑ |E1 = idE1 , we
have ϑ(E) ∩ D �= ∅.

Using this notion, Kourogenis and Papageorgiou [14] proved the following abstract
minimax principle (see also Gasiński and Papageorgiou [12, Theorem 2.1.2, p139] for
a more general version).

Theorem 2.3 If X is a reflexive Banach space, E1 and D are nonempty subsets of X with
D closed, E1 and D link in X, ϕ : X → R is locally Lipschitz, satisfies the nonsmooth
Cerami condition, sup

E1

ϕ < inf
D
ϕ and

c = inf
η∈� sup

v∈E
ϕ(η(v)),



J Glob Optim (2007) 38:459–478 463

where

� = {
η ∈ C(E; X) : η|E1 = idE1

}

and E ⊇ E1 is as in the definition of linking sets,
then c ≥ inf

D
ϕ and c is a critical value of ϕ, i.e. there exists a critical point x0 ∈ X of ϕ

such that ϕ(x0) = c. Moreover, if c = inf
D
ϕ, then x0 ∈ D.

3 Existence of two solutions

The precise hypotheses on the data of (1.1) are the following:

H(a) a(t, y) = ∂G(t, y), where G: (0, T)× R −→ R is a functional, such that

(1) the function (t, y) −→ G(t, y) is continuous;
(2) for every t ∈ (0, T), the function y �−→ G(t, y) is strictly convex, G(t, 0) = 0 for

all t ∈ (0, T) and ∂G(0, ·) = ∂G(T, ·);
(3) for all t ∈ (0, T), all y ∈ R and all v∗ ∈ a(t, y) = ∂G(t, y), we have

|v∗| ≤ a1(t)+ c1|y|p−1,

with a1 ∈ Lp′
((0, T))+ (where 1

p + 1
p′ = 1), c1 > 0;

(4) for all t ∈ (0, T), all y ∈ R and all v∗ ∈ a(t, y), we have

v∗y ≤ pG(t, y);

(5) for all t ∈ (0, T) and all y ∈ R, we have

c0|y|p ≤ G(t, y),

for some c0 > 0.

Remark 3.1 Suppose that β ∈ Cper([0, T]), β ≥ γ > 0 for all t ∈ (0, T) and G(t, y) =
1
pβ(t)|y|p. Then

a(t, y) = ∂G(t, y) = β(t)|y|p−2y

satisfies hypotheses H(a) and the resulting differential operator is a weighted
p-Laplacian. If β ≡ 1, then we have the p-Laplacian. We remark that hypotheses
H(a) do not require that the differential operator is homogeneous. Such single valued
operators independent of t ∈ (0, T) were considered by Manásevich and Mawhin [15]
and Mawhin [16]. However, in these works the problem is vectorial and no growth
restriction is imposed on the map y �−→ a(y).

Another possibility of G is the following

G(t, y) = β(t)
p

[
(1 + y2)

p
2 − 1

]

with p > 1 and β ∈ Cper([0, T]), β(t) ≥ γ > 0 for all t ∈ (0, T).
One more possibility of G is the following

G(t, y) = β(t)
p

[
(1 + |y|)p − 1

]
,
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where p > 1 and β are as above. In this case, the map a is really multivalued and it
still satisfies hypotheses H(a).

H(j)1 j: (0, T)× R −→ R is a function, such that

(1) for every ζ ∈ R, the function t −→ j(t, ζ ) is measurable;
(2) for almost all t ∈ (0, T), the function ζ �−→ j(t, ζ ) is locally Lipschitz with

Lp′
((0, T))+-Lipschitz constant;

(3) for every M > 0, there exists âM ∈ L1((0, T))+, such that for almost all t ∈ (0, T),
all |ζ | ≤ M and all u∗ ∈ ∂j(t, ζ ), we have |u∗| ≤ âM(t);

(4) there exist j± ∈ L1((0, T)), such that

lim
ζ→±∞ j(t, ζ ) = j±(t),

uniformly for almost all t ∈ (0, T) and
∫ T

0
j±(t)dt ≤ 0;

(5) there exists δ > 0, such that for almost all t ∈ (0, T) and all |ζ | ≤ δ, we have
j(t, ζ ) ≥ 0 (local sign condition);

(6) for almost all t ∈ (0, T) and all ζ ∈ R, we have

j(t, ζ ) ≤ c0λ1|ζ |p

with c0 > 0 as in hypothesis H(a)(5) and λ1 > 0 being the first nonzero eigen-
value of the negative p-Laplacian with periodic boundary condition.

Remark 3.2 Hypothesis H(j)1(4) classifies the problem as strongly resonant. Hypoth-
eses H(j)1(5) and (6) imply that j(t, 0) = 0 for almost all t ∈ (0, T).

We consider the nonlinear operator A: W1,p
per((0, T)) −→ 2W1,p

per((0,T))∗, defined by

A(u) =
{

v∗ ∈ W1,p
per((0, T))∗ : there exists v ∈ Sp′

a(·,u′(·)) such that

for ally ∈ W1,p
per((0, T)) : 〈v∗, y〉 =

∫ T

0
v(t)y′(t)dt

}
.

Hence

A(u) = { − v′ : v ∈ Sp′
a(·,u′(·))

}

(the derivative taken in the sense of the distributions). Clearly for every u ∈ W1,p
per

((0, T)), the set A(u) ⊆ W1,p
per((0, T))∗ is nonempty, convex and w-compact. Moreover,

the function u �−→ A(u) is monotone, thus in fact maximal monotone (see Gasiński
and Papageorgiou [12, Proposition 1.4.6, p 74]).

Lemma 3.3 Let hypotheses H(a) hold. If {un}n≥1 ⊆ W1,p
per((0, T)) is a sequence, such

that

un −→ u weakly in W1,p
per((0, T)), (3.1)

v∗
n ∈ A(un) ∀n ≥ 1
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and

lim sup
n→+∞

〈v∗
n, un − u〉 ≤ 0, (3.2)

then

un −→ u in W1,p
per((0, T)). (3.3)

Proof Let {un}n≥1 ⊆ W1,p
per((0, T)) and {v∗

n}n≥1 ⊆ W1,p
per((0, T))∗ be sequences as

postulated in the assumptions of the lemma. Then, we have

〈v∗
n, un − u〉 =

∫ T

0
vn(t)(un − u)′(t)dt ∀n ≥ 1,

with n ∈ Sp′
a(·,u′

n(·)). By virtue of hypothesis H(a)(3), we see that the sequence {vn}n≥1 ⊆
Lp′

((0, T)) is bounded. So by passing to a subsequence if necessary, we may assume that

vn −→ v weakly in Lp′
((0, T)) (3.4)

for some v ∈ Lp′
((0, T)).

We claim that v ∈ Sp′
a(·,u′(·)). To this end let y ∈ W1,p

per((0, T)) and w∗ ∈ A(y). From

the definition of the operator A, we know that we can find w ∈ Sp′
a(·,y′(·)), such that

〈w∗, z〉 =
∫ T

0
w(t)z′(t)dt, ∀z ∈ W1,p

per((0, T)).

Since a(t, ζ ) = ∂G(t, ζ ), the operator ζ −→ a(t, ζ ) is maximal monotone and so, we
have

0 ≤
∫ T

0
(vn(t)− w(t))(u′

n(t)− y′(t))dt

=
∫ T

0
vn(t)(u′

n − u′)(t)dt +
∫ T

0
vn(t)(u′ − y′)(t)dt

−
∫ T

0
w(t)(u′

n − y′)(t)dt

= 〈v∗
n, un − u〉 +

∫ T

0
vn(t)(u′ − y′)(t)dt −

∫ T

0
w(t)(u′

n − y′)(t)dt. (3.5)

From (3.1), (3.2) and (3.4), if we pass to the limit as n → +∞ in (3.5), we obtain

0 =
∫ T

0
(v(t)− w(t))(u′(t)− y′(t))dt = 〈v∗ − w∗, u − y〉

with v∗ = −v′. But the pair (y, w∗) ∈ Gr A was arbitrary and we know that the
operator A is maximal monotone. So it follows that (u, v∗) ∈ Gr A, i.e. v∗ ∈ A(u) and

〈v∗, z〉 =
∫ T

0
v(t)z′(t)dt, ∀z ∈ W1,p

per((0, T))

for some v ∈ Sp′
a(·,u′(·)) and so v = v ∈ Sp′

a(·,u′(·)).
Because of the hypotheses, we have

lim sup
n→+∞

〈v∗
n − v∗, un − u〉 ≤ 0. (3.6)
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On the other hand by virtue of the monotonicity of a(t, ·), we have

lim inf
n→+∞〈v∗

n − v∗, un − u〉 = lim inf
n→+∞

∫ T

0
(vn(t)− v(t))(u′

n(t)− u′(t))dt ≥ 0. (3.7)

Comparing (3.6) and (3.7), we infer that

〈v∗
n − v∗, un − u〉 =

∫ T

0
(vn(t)− v(t))(u′

n(t)− u′(t))dt −→ 0.

Because of the monotonicity of a(t, ·) = ∂G(t, ·), the integrand

βn(t) = (vn − v)(t)(u′
n − u′)(t) −→ 0 for a.a. t ∈ (0, T). (3.8)

So we have

βn(t) −→ 0 for a.a. t ∈ (0, T)

and

|βn(t)| ≤ k1(t) for a.a. t ∈ (0, T) and all n ≥ 1,

with k1 ∈ L1((0, T))+. For all (t, y) ∈ (0, T)× R and all v ∈ a(t, y), from the definition
of the convex subdifferential, we have

v(−y) ≤ G(t, 0)− G(t, y) = −G(t, y)

so, from hypothesis H(a)(5), we get

vy ≥ G(t, y) ≥ c0|y|p. (3.9)

Using hypothesis H(a)(3) and (3.9), for all t ∈ (0, T)\N, with |N|1 = 0, we have

k1(t) ≥ βn(t) = (vn − v)(t)(u′
n − u′)(t)

≥ c0
[|u′

n(t)|p + |u′(t)|p] − |u′
n(t)|p

(
a1(t)+ c1|u′(t)|p−1)

−|u′(t)|(a1(t)+ c1|u′
n(t)|p−1). (3.10)

From (3.10), it follows that for all t ∈ (0, T) \ N, the sequence {u′
n(t)}n≥1 ⊆ R is

bounded. So by passing to a subsequence (depending in general on t ∈ (0, T)\N), we
may assume that

u′
n(t) −→ û(t) in R.

We fix t ∈ (0, T) \ N and select fn(t) ∈ a(t, û(t)), such that
∣∣vn(t)− fn(t)

∣∣ = d
(
vn(t), a(t, û(t))

) ≤ h∗(a(t, u′
n(t)), a(t, û(t))

)
,

with h∗ being the Hausdorff distance of sets (see Gasiński and Papageorgiou [12,
Definition 1.2.4, p 18]). Note that {fn(t)}n≥1 ⊆ a(t, û(t)) ∈ Pkc(R) and so by passing to
a subsequence if necessary, we may assume that

fn(t) −→ f (t) ∈ a(t, û(t)).

Because a(t, ·) is maximal monotone, it is upper semicontinuous (see Gasiński and
Papageorgiou [12, Proposition 1.4.5, p 73]) and also h-upper semicontinuous (see
Gasiński and Papageorgiou [12, Proposition 1.2.8, p 19]). Therefore, we have

h∗(a(t, u′
n(t)), a(t, û(t))

) −→ 0
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so

vn(t) −→ f (t) for all t ∈ (0, T)\N.

Because of (3.8), in the limit as n → +∞, we have

(f (t)− v(t))(̂u(t)− u′(t)) = 0, ∀t ∈ (0, T)\N. (3.11)

By hypothesis, we have that a(t, ·) ∈ ∂G(t, ·) and the function y �−→ G(t, y) is strictly
convex. Therefore the operator y �−→ a(t, y) is strictly monotone. Since f (t) ∈ a(t, û(t))
and v(t) ∈ a(t, u′(t)) for all t ∈ (0, T)\N, from (3.11), we infer that û(t) = u′(t) for all
t ∈ (0, T)\N. Therefore, we have

u′
n(t) −→ u′(t) for a.a. t ∈ (0, T) (3.12)

and from (3.1), also

u′
n −→ u′ weakly in Lp((0, T)). (3.13)

From (3.10), we see that

c0|u′
n(t)|p ≤ k1(t)+ c0|u′(t)|p + |u′(t)|(a1(t)+ c1|u′

n(t)|p−1)

+ |u′
n(t)|

(
a1(t)+ c1|u′(t)|p−1).

Using Young’s inequality with ε > 0, we obtain

c0|u′
n(t)|p ≤ k1(t)+ c0|u′(t)|p + a1(t)|u′(t)| + cp

1

εp
|u′(t)|p + ε

p′ |u′
n(t)|p

+ a1(t)|u′
n(t)| + ε

p
|u′

n(t)|p + cp′
1

εp′ |u′(t)|p. (3.14)

If we choose ε < c0 (recall that 1
p + 1

p′ = 1), from (3.14), it follows that the sequence

{|u′
n(·)|p} ⊆ L1((0, T)) is uniformly integrable. Because of (3.12), (3.13) and Vitali’s

Theorem (see e.g. Gasiński and Papageorgiou [12, Theorem A.2.1, p 715]), we have
that

‖u′
n‖p −→ ‖u′‖p. (3.15)

Combining (3.12), (3.13) and (3.15) and using the Kadec–Klee property (see Gasiński
and Papageorgiou [12, Remark A.3.11, p722]), we have that

u′
n −→ u′ in Lp((0, T))

so finally (3.3) holds. �

We consider the energy functional ϕ : W1,p
per((0, T)) −→ R, defined by

ϕ(u) =
∫ T

0
G(t, u′(t))dt −

∫ T

0
j(t, u(t))dt.

We know that ϕ is locally Lipschitz (see Gasiński and Papageorgiou [12, Theorem
1.3.10, p 59]).

The next lemma illustrates the partial lack of compactness which characterizes
strongly resonant problems.
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Lemma 3.4 If hypotheses H(a) and H(j)1 hold, then ϕ satisfies the nonsmooth Cerami
condition at any level c �= − ∫ T

0 j±(t)dt.

Proof Let c �= − ∫ T
0 j±(t)dt and let {un}n≥1 ⊆ W1,p

per((0, T)) be a sequence, such that

ϕ(un) −→ c and (1 + ‖un‖)mϕ(un) −→ 0. (3.16)

Let w∗
n ∈ ∂ϕ(un) be such that mϕ(un) = ‖w∗

n‖∗ for all n ≥ 1. The existence of such
an element follows from the weak lower semicontinuity of the norm functional in
W1,p

per((0, T))∗ and from the weak compactness of ∂ϕ(un) ⊆ W1,p
per((0, T))∗.

Let IG: Lp((0, T)) −→ R be the integral functional, defined by

IG(y) =
∫ T

0
G(t, y(t))dt.

We know that IG is continuous, convex. Let D ∈ L(
W1,p

per((0, T)); Lp((0, T))
)

be
defined by

Du = d
dt

u.

We have
∫ T

0
G(t, u′(t))dt = (IG ◦ D)(u), ∀u ∈ W1,p

per((0, T))

so

∂(IG ◦ D)(u) = −D∗∂IG(u′) = − d
dt
∂IG(u′), ∀u ∈ W1,p

per((0, T))

and finally

∂(IG ◦ D)(u) = A(u)

(see Gasiński and Papageorgiou [12, Proposition 1.3.15, p 54 and Remark 1.3.6, p 55]).
Then

w∗
n = v∗

n − u∗
n, ∀n ≥ 1, (3.17)

with v∗
n ∈ A(un) and u∗

n ∈ Sp′
∂j(·,un(·)). We claim that the sequence {un}n≥1 ⊆ W1,p

per((0, T))
is bounded. Suppose that this is not true. By passing to a subsequence if necessary, we
may assume that

‖un‖ −→ +∞.

Let yn = un‖un‖ for all n ≥ 1. We may assume that

yn −→ y weakly in W1,p
per((0, T)),

yn −→ y in C([0, T])
(recall that the embedding W1,p

per((0, T)) ⊆ C([0, T]) is compact). From the choice of

the sequence {un}n≥1 ⊆ W1,p
per((0, T)), we have

ϕ(un)

‖un‖p =
∫ T

0

G(t, u′
n(t))

‖un‖p dt −
∫ T

0

j(t, un(t))
‖un‖p dt ≤ M1

‖un‖p (3.18)
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for some M1 > 0. Because of hypothesis H(a)(5), for almost all t ∈ (0, T) and all
n ≥ 1, we have

c0|u′
n(t)|p ≤ G(t, u′

n(t))

so

c0|y′
n(t)|p ≤ G(t, u′

n(t))
‖un‖p . (3.19)

Moreover, by virtue of hypothesis H(j)1(4), we can find M2 > 0, such that for almost
all t ∈ (0, T) and all |ζ | > M2, we have

|j(t, ζ )| ≤ max
{|j+(t)|, |j−(t)|

} + 1. (3.20)

On the other hand from hypothesis H(j)1(3) and the mean value theorem for locally
Lipschitz functions (see e.g. Gasiński and Papageorgiou [12, Proposition 1.3.14, p53]),
we see that for almost all |ζ | ≤ M2, we have

|j(t, ζ )| ≤ β1(t) (3.21)

with β1 ∈ L1((0, T))+. From (3.20) and (3.21), we conclude that for almost all t ∈ (0, T)
and all ζ ∈ R, we have

|j(t, ζ )| ≤ β2(t)

with β2 ∈ L1((0, T))+. So we have
∣∣∣∣

∫ T

0

j(t, un(t))
‖un‖p dt

∣∣∣∣ ≤ ‖β2‖1

‖un‖p −→ 0. (3.22)

Passing to the limit as n → +∞ in (3.18) and using (3.19) and (3.22), we obtain

c0‖y′‖p
p ≤ c0 lim inf

n→+∞ ‖y′
n‖p

p ≤ 0

so y ≡ ξ ∈ R.
If ξ = 0, then from (3.18) and (3.19), we have

c0‖y′
n‖p

p ≤ M1

‖un‖p +
∫ T

0

j(t, un(t))
‖un‖p dt,

so

y′
n −→ 0 in Lp((0, T))

and thus

yn −→ 0 in W1,p
per((0, T)),

a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1. So ξ �= 0. Suppose that ξ > 0.
Then

un(t) −→ +∞, ∀t ∈ (0, T).

In fact we claim that this convergence is uniform in t ∈ (0, T). To this end let δ′ ∈ (0, ξ).
Since yn −→ ξ in C([0, T]), we can find n0 = n0(δ

′) ≥ 1, such that for all n ≥ n0 and
all t ∈ (0, T), we have

|yn(t)− ξ | < δ′
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so

0 < δ1 = ξ − δ′ ≤ yn(t)

(hence un(t) > 0 for all n ≥ n0 and all t ∈ (0, T)).
Moreover, since ‖un‖ −→ +∞, for a given η > 0, we can find n1 = n1(η) ≥ n0,

such that

‖un‖ ≥ η > 0, ∀n ≥ n1.

For all n ≥ n1 and all t ∈ (0, T), we have

un(t)
η

≥ un(t)
‖un‖ = yn(t) ≥ δ1 > 0

so

un(t) ≥ ηδ1 > 0, ∀t ∈ (0, T), n ≥ n1.

Because η > 0 was arbitrary, we conclude that

min
t∈[0,T] un(t) −→ +∞.

Using this fact in conjunction with hypothesis H(j)1(4), we see that for a given ε > 0,
we can find n2 = n2(ε) ≥ 1, such that for almost all t ∈ (0, T) and all n ≥ n2, we have

j+(t)− ε ≤ j(t, un(t)) ≤ j+(t)+ ε

so
∫ t

0
j(t, un(t))dt −→

∫ T

0
j+(t)dt. (3.23)

Recall that ϕ(un) −→ c. For a given ε > 0, we can find n3 = n3(ε) ≥ n2, such that

|ϕ(un)− c| ≤ ε, ∀n ≥ n3

so

c − ε ≤ ϕ(un) =
∫ T

0
G(t, u′

n(t))dt −
∫ T

0
j(t, un(t))dt ≤ c + ε. (3.24)

From the choice of the sequence {un} ⊆ W1,p
per((0, T)) (see (3.16) and (3.17)), we have

∣∣∣∣〈v∗
n, un〉 −

∫ T

0
u∗

n(t)un(t)dt

∣∣∣∣ ≤ εn

with εn ↘ 0, so
∣∣∣∣

∫ T

0
vn(t)u′

n(t)dt −
∫ T

0
u∗

n(t)un(t)dt

∣∣∣∣ ≤ εn (3.25)

with vn ∈ Sp′
a(·,u′

n(·)). From the definition of the generalized subdifferential, for almost
all t ∈ (0, T) and all n ≥ 1, we have

u∗
n(t)un(t) ≤ j 0(t, un(t); un(t))

= lim sup
zn

m → un(t)
ε ↘ 0

j(t, zn
m + εun(t))− j(t, zn

m)

ε
. (3.26)
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Because un(t) −→ +∞ (uniformly in t ∈ (0, T)), up to a subsequence, we must have
zn

m(n) −→ +∞ as n → +∞ and so by virtue of hypothesis H(j)1(4), for a given ε > 0,
we can find n4 = n4(ε) ≥ 1, such that

j+(t)− ε2

2
≤ j(t, zn

m(n) + εun(t)) ≤ j+(t)+ ε2

2
, ∀n ≥ n4 (3.27)

and

j+(t)− ε2

2
≤ j(t, zn

m(n)) ≤ j+(t)+ ε2

2
, ∀n ≥ n4. (3.28)

Using (3.27) and (3.28) in (3.26), we see that for almost all t ∈ (0, T) and all n ≥ n4,
we have

|u∗
n(t)un(t)| ≤ ε2

ε
= ε

so

u∗
n(t)un(t) −→ 0 uniformly in t ∈ (0, T)

and thus
∫ T

0
u∗

n(t)un(t)dt −→ 0. (3.29)

Using (3.29) in (3.25), we obtain
∫ T

0
vn(t)u′

n(t)dt −→ 0. (3.30)

Because of hypothesis H(a)(4), we have that
∫ T

0
vn(t)u′

n(t)dt ≤ p
∫ T

0
G(t, u′

n(t))dt,

and from (3.30), we have

0 ≤ lim inf
n→+∞

∫ T

0
G(t, u′

n(t))dt. (3.31)

On the other hand since vn(t) ∈ a(t, u′
n(t)) = ∂G(t, u′

n(t)) for almost all t ∈ (0, T), from
the definition of the convex subdifferential, we have

vn(t)u′
n(t) ≥ G(t, u′

n(t)) for a.a. t ∈ (0, T)

so from (3.30), we have

lim sup
n→+∞

∫ T

0
G(t, u′

n(t))dt ≤ 0. (3.32)

From (3.31) and (3.32), it follows that
∫ T

0
G(t, u′

n(t))dt −→ 0. (3.33)
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Then returning to (3.24), passing to the limit as n → +∞ and using (3.23) and (3.33),
we obtain

c − ε ≤ −
∫ T

0
j+(t)dt ≤ c + ε.

Let ε ↘ 0, to conclude that c = − ∫ T
0 j+(t)dt, a contradiction. This proved that the

sequence {un}n≥1 ⊆ W1,p
per((0, T)) is bounded. Thus by passing to a subsequence if

necessary, we may assume that

un −→ u weakly in W1,p
per((0, T)),

un −→ u in C([0, T]).
From the choice of the sequence {un}n≥1 ⊆ W1,p

per((0, T)), we have
∣
∣
∣
∣〈v∗

n, un − u〉 −
∫ T

0
u∗

n(t)(un − u)(t)dt

∣
∣
∣
∣ ≤ εn

with εn ↘ 0. Note that
∫ T

0 u∗
n(t)(un − u)(t)dt −→ 0 (see hypothesis H(j)1(3)). So it

follows that

〈v∗
n, un − u〉 −→ 0.

Invoking Lemma 3.3, we obtain that

un −→ u in W1,p
per((0, T)).

The argument is similar if we assume that ξ < 0. Now instead of j+, we use j−.
So finally we have that ϕ satisfies the nonsmooth Cerami condition at any level
c �= − ∫ T

0 j±(t)dt. �

Now we are ready for our first multiplicity result.

Theorem 3.5 If hypotheses H(a) and H(j)1 hold, then problem (1.1) has at least two
nontrivial solutions u0, y0 ∈ C1

per([0, T]).
Proof By virtue of hypotheses H(a)(5), H(j)1(3) and (4), the energy functional ϕ
is bounded below. Consider the open set

U+ =
{

u ∈ W1,p
per((0, T)) :

∫ T

0
|u(t)|p−2u(t)dt > 0

}

and let m+ = inf
U+
ϕ. Because G(t, 0) = 0 for all t ∈ (0, T) and j(t, 0) = 0 for almost all

t ∈ (0, T) (see Remark 3.2), we have

m+ ≤ ϕ(0) = 0.

If m+ = ϕ(0) = 0, then from hypothesis H(j)1(5) (the local sign condition), for every
ξ ∈ (0, δ), we have

ϕ(ξ) = m+.

Note that for every ξ ∈ (0, δ), we have ξ ∈ int W1,p
per((0, T))+ and so ξ is a local min-

imizer of ϕ, hence 0 ∈ ∂ϕ(ξ). Therefore we have produced a continuum of nonzero,
constant solutions of problem (1.1).
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Next suppose that m+ < 0 = ϕ(0). Because − ∫ T
0 j±(t)dt ≥ 0 (see hypothesis

H(j)1(4)), from Lemma 3.4, it follows that ϕ satisfies the nonsmooth Cerami condi-
tion at level m+. Let ϕ+ : W1,p

per((0, T)) −→ R = R ∪ {+∞} be defined by

ϕ+(u) =
{
ϕ(u), if u ∈ U+,
+∞, otherwise.

Evidently ϕ+ is proper, lower semicontinuous and bounded below. Using Theorem
2.1, we can find a sequence {un}n≥1 ⊆ U+, such that

ϕ+(un) = ϕ(un) ↘ m+

and

ϕ+(un) ≤ ϕ+(y)+ ‖un − y‖
n(1 + ‖un‖) , ∀y ∈ W1,p

per((0, T)).

Let λ > 0 and h ∈ W1,p
per((0, T)) and set y = un + λh. Since un ∈ U+, we can find δ̂ > 0,

small enough so that

y = un + λh ∈ U+, ∀λ ∈ (0, δ̂].
Therefore, we have

− λ‖h‖
n(1 + ‖un‖) ≤ ϕ+(un + λh)− ϕ+(un) = ϕ(un + λh)− ϕ(un)

so

− ‖h‖
n(1 + ‖un‖) ≤ ϕ(un + λh)− ϕ(un)

λ
, ∀λ ∈ (0, δ̂]

and thus

− ‖h‖
n(1 + ‖un‖) ≤ ϕ0(un; h), ∀h ∈ W1,p

per((0, T)), n ≥ 1.

Using Theorem 2.2, there exists w∗
n ∈ W1,p

per((0, T))∗ with ‖w∗
n‖∗ = 1, such that

〈w∗
n, h〉 ≤ n(1 + ‖un‖)ϕ0(un; h), ∀h ∈ W1,p

per((0, T))

so

w∗
n

n(1 + ‖un‖) ∈ ∂ϕ(un), ∀n ≥ 1

and thus

(1 + ‖un‖)mϕ(un) ≤ 1
n

−→ 0.

Thus by Lemma 3.4, we can say that

un −→ u0 in W1,p
per((0, T)).

We have that u0 ∈ U+ and

m+ = ϕ+(u0) = ϕ(u0).
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Suppose that u0 ∈ ∂U+. Then
∫ T

0
|u0(t)|p−2u0(t)dt = 0.

Moreover, from hypothesis H(a)(5) and H(j)1(6) and the variational characterization
of λ1 > 0 (see (2.2)), we have that

0 > m+ =
∫ T

0
G(t, u′

0(t))dt −
∫ T

0
j(t, u0(t))dt

≥ c0‖u′
0‖p

p − c0λ1‖u0‖p
p

≥ c0‖u′
0‖p

p − c0‖u′
0‖p

p = 0

a contradiction. So u0 ∈ U+. Hence u0 �= 0 is a local minimizer of ϕ and for this
reason we have that 0 ∈ ∂ϕ(u0). This inclusion implies that we can find v∗

0 ∈ A(u0)

and u∗
0 ∈ Sp′

∂j(·,u0(·)), such that v∗
0 = u∗

0. By definition v∗
0 = −v′

0 with v0 ∈ Sp′
a(·,u′

0(·)).

Let 〈·, ·〉 be the duality brackets for the pair
(
W1,p

per((0, T)), W1,p
per((0, T))∗

)
. For every

ϑ ∈ C1
c((0, T)), we have

〈v∗
0,ϑ〉 =

∫ T

0
u∗

0(t)ϑ(t)dt,

so
∫ T

0
v0(t)ϑ ′(t)dt =

∫ T

0
u∗

0(t)ϑ(t)dt

and thus

〈−v′
0,ϑ〉 = 〈u∗

0,ϑ〉.
Because the embedding C1

c((0, T)) ⊆ W1,p
per((0, T)) is dense, from the last equality and

since ϑ ∈ C1
c((0, T)) was arbitrary, we infer that

v∗
0(t) = −v′

0(t) = u∗
0(t) for a.a. t ∈ (0, T),

u0(0) = u0(T)
(3.34)

with v0 ∈ Sp′
a(·,u′

0(·)), u∗
0 ∈ Sp′

∂j(·,u0(·)). Evidently v0 ∈ W1,p′
((0, T)) ⊆ C([0, T]) and we

have

u′
0(t) = a−1(t, v0(t)), ∀t ∈ (0, T).

By virtue of hypothesis H(a)(2), the function (t, v) �−→ a−1(t, v) is single valued. We
claim that this map is continuous. To this end suppose that {(tn, vn)}n≥1 ⊆ (0, T) × R

is a sequence, such that

(tn, vn) −→ (t, v0) in (0, T)× R

and

yn = a−1(tn, vn), ∀n ≥ 1.

From the definition of the convex subdifferential, hypothesis H(a)(5) and since
G(t, 0) = 0 for all t ∈ (0, T), we have

vnyn ≥ G(tn, yn) ≥ c0|yn|p
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so

|yn|p−1 ≤ 1
c0

|vn| ∀n ≥ 1.

It follows that the sequence {yn}n≥1 ⊆ R is bounded and, passing to a subsequence if
necessary, we may assume that

yn −→ y in R.

Again form the definition of the convex subdifferential, we have that

vn(z − yn) ≤ G(tn, z)− G(tn, yn), ∀z ∈ R

so

v0(z − y) ≤ G(t, z)− G(t, y), ∀z ∈ R,

thus

v0 ∈ ∂G(t, y) = a(t, y)

and so y = a−1(t, v0). This proves that indeed the map (t, v) �−→ a−1(t, v) is contin-
uous on (0, T) × R. Hence the map t �−→ a−1(t, v0(t)) = u′

0(t) is continuous and so

u0 ∈ C1([0, T]). Using integration by parts, for every η ∈ W1,p
per((0, T)), we have

〈v∗
0, η〉 =

∫ T

0
v0(t)η′(t)dt =

∫ T

0
u∗

0(t)η(t)dt

with v0 ∈ Sp′
a(·,u′

0(·)), so

v0(T)η(T)− v0(0)η(0)−
∫ T

0
v′

0(t)η(t)dt =
∫ T

0
u∗

0(t)η(t)dt

and thus

v0(0)η(0) = v0(T)η(T).

Since η ∈ W1,p
per((0, T)) was arbitrary, it follows that v0(0) = v0(T). Then because of

hypothesis H(a)(2), we have that

u′
0(0) = a−1(0, v0(0)) = a−1(T, v0(T)) = u′

0(T)

so u0 ∈ C1
per([0, T]) is a nontrivial solution for problem (1.1).

Considering the open set U− ⊆ W1,p
per((0, T)), defined by

U− =
{

u ∈ W1,p
per((0, T)) :

∫ T

0
|u(t)|p−2u(t)dt < 0

}

and arguing as before (with U+ replaced by U−), we obtain another solution y0 ∈ U−
of (1.1), with y0 �= 0, y0 �= u0.

This way we have produced two distinct nonzero solutions for problem (1.1). �
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Remark 3.6 An example of a nonsmooth function satisfying hypotheses H(j)1 is the
following (for simplicity we drop the t-dependence):

j(ζ ) =

⎧
⎪⎪⎨

⎪⎪⎩

ec0λ1eζ , if ζ < −1,
c0λ1|ζ |p, if |ζ | ≤ 1,
c0λ1√
ζ

, if ζ > 1.

Another function satisfying hypotheses H(j)1 is the following:

j(ζ ) =

⎧
⎪⎨

⎪⎩

arctan(ζ + 1), if ζ < −1,
0, if ζ ∈ [−1, 0],
c0λ1ζ

p

aζ
, if ζ > 0

with a > 1.

4 Existence of three solutions

We can guarantee the existence of three solutions, by modifying our hypotheses on
the nonsmooth potential. More precisely our new hypotheses on j are the follow-
ing.

H(j)2j: (0, T)× R −→ R is a function, such that

(1) for every ζ ∈ R, the function t −→ j(t, ζ ) is measurable;
(2) for almost all t ∈ (0, T), the function ζ �−→ j(t, ζ ) is locally Lipschitz with

Lp′
((0, T))+-Lipschitz constant;

(3) for every M > 0, there exists âM ∈ L1((0, T))+, such that for almost all t ∈ (0, T),
all |ζ | ≤ M and all u∗ ∈ ∂j(t, ζ ), we have |u∗| ≤ âM(t);

(4) there exist j± ∈ L1((0, T)), such that

lim
ζ→±∞ j(t, ζ ) = j±(t),

uniformly for almost all t ∈ (0, T);
(5) for almost all t ∈ (0, T) and all ζ ∈ R, we have

j(t, ζ ) ≤ c0λ1|ζ |p,

with c0 > 0 as in hypothesis H(a)(5) and λ1 > 0 being the first nonzero eigen-
value of the negative p-Laplacian with periodic boundary condition;

(6) there exist ξ− < 0 < ξ+ such that
∫ T

0
j(t, ξ±)dt > 0 >

∫ T

0
j±(t)dt.

Remark 4.1 Note that the strong resonance hypothesis H(j)2(4) is still in effect. We no
longer impose the local sign condition (see hypothesis H(j)1(5)). Instead we employ
hypothesis H(j)2(6).

A careful reading of the proof of Lemma 3.4, reveals that the result remains valid
in the present situation, namely the energy functional ϕ satisfies the nonsmooth Ce-
rami condition at any level c �= − ∫ T

0 j±(t)dt. Then we can prove the following three
solutions theorem.
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Theorem 4.2 If hypotheses H(a) and H(j)2 hold, then problem (1.1) has at least three
solutions u0, y0, z0 ∈ C1

per([0, T]).

Proof Using the sets U± ⊆ W1,p
per((0, T)), as in the proof of Theorem 3.5, we can

produce two nontrivial solutions u0, y0 ∈ W1,p
per((0, T)), u0 ∈ U+, y0 ∈ U−. Note that

in the present setting, it cannot happen that m± = 0, since

m+ ≤ −
∫ T

0
j(t, ξ+)dt < 0 and m− ≤ −

∫ T

0
j(t, ξ−)dt < 0

(see hypothesis H(j)2(6)).
Next let

E1 = {ξ+, ξ−}
E = [ξ−, ξ+] = = {

u ∈ W1,p
per((0, T)) : ξ− ≤ u(t) ≤ ξ+ for all t ∈ (0, T)

}
,

D =
{

u ∈ W1,p
per((0, T)) :

∫ T

0
|u(t)|p−2u(t)dt = 0

}
.

We claim that E1 and D link in W1,p
per((0, T)). Indeed, first note that E1 ∩ D = ∅. Next

let ϑ ∈ C
(
E; W1,p

per((0, T))
)
, with ϑ |E1

= id|E1
, i.e. ϑ(ξ−) = ξ− and ϑ(ξ+) = ξ+. Let

ψ : W1,p
per((0, T)) −→ R be defined by

ψ(u) =
∫ T

0
|u(t)|p−2u(t)dt.

Then ψ ∈ C
(
W1,p

per((0, T))
)

and so ψ ◦ ϑ ∈ C(E). We have

(ψ ◦ ϑ)(ξ−) = ψ(ξ−) < 0 < ψ(ξ+) = (ψ ◦ ϑ)(ξ+).
Evidently E is connected. Hence so is (ψ ◦ ϑ)(E) and so we can find u ∈ E, such
that (ψ ◦ ϑ)(u) = 0. We have ψ(ϑ(u)) = 0, which means that ϑ(u) ∈ D. Therefore
ϑ(E)∩ D �= ∅, which proves that the two sets E1 and D link in W1,p

per((0, T)). Applying

Theorem 2.3, we obtain z0 ∈ W1,p
per((0, T)), such that

ϕ(z0) ≥ inf
D
ϕ = 0 > m± and 0 ∈ ∂ϕ(z0).

Since m+ = ϕ(u0), m− = ϕ(y0), we see that z0 �= u0 and z0 �= y0 and from
the inclusion 0 ∈ ∂ϕ(z0), it follows that z0 ∈ C1

per([0, T]) is a third solution of
problem (1.1). �

Remark 4.3 A nonsmooth potential satisfying hypothesis H(j)2 is given by the
following function (again for simplicity we drop the t-dependence):

j(ζ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2c0λ1√|ζ | − c0λ1, if ζ < −1,

c0λ1|ζ |p, if ζ ∈ [−1, 0],
ζ ln ζ , if ζ ∈ (0, 1],
c ln ζ

ζ
− arctan(ζ − 1), if ζ > 1

with c > 1.
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10. Gasiński, L., Papageorgiou, N.S.: A Multiplicity result for nonlinear second order periodic

equations with nonsmooth potential. Bull. Belg. Math. Soc. 9, 245–258 (2002)
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18. Motreanu, D., RPǎdulescu, V.D.: Variational and Non-Variational Methods in Nonlinear Analysis
and Boundary Value Problems. Kluwer, Dordrecht, (2003).

19. Papageorgiou, E.H., Papageorgiou, N.S.: Two nontrivial solutions for quasilinear periodic
problems. Proc. Amer. Math. Soc. 132, 429–434 (2004)

20. Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear
boundary value problems. Ann. Inst. H. Poincaré. Anal. Non Lineaire. 3, 77–109 (1986)


	Multiplicity theorems for scalar periodic problemsat resonance with bold0mu mumu ppRawpppp-Laplacian-like operator
	Abstract
	Introduction
	Mathematical background
	Existence of two solutions
	Existence of three solutions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


