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Abstract In this paper, we study the existence of multiple solutions for nonlinear
scalar periodic problems at resonance with p-Laplacian-like operator. Using the Eke-
land variational principle a two-solution theorem is obtained and using also a local
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1 Introduction

In this paper, we prove the existence of multiple solutions for the following nonlinear
periodic problem:

(at,u' @) + 8j(t,u(t)) 0 fora.a.te (0,7), (11)
u0) =u(T), u'(0) =u'(T). ’

Here (t,y) — a(t,y) is a set-valued map and 9j(t, ¢) is the generalized subdifferen-
tial of a generally nonsmooth locally Lipschitz potential { — j(z,¢). Let p € (1, +00)
and consider the Sobolev space

Wb (0, 7)) = {u e WP ((0,T)) : u0) = u(D)}.

Recall that WLP((O, T)) is embedded into C([0, T]) and so the pointwise evaluation
att = 0 and r = T make sense. For a given u € Wl[l,é’}((O, T)), the multivalued term
(at, u/(t)))/ is interpreted as follows:
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(a@t, ' () = {V € L ((0,T)), v(1) €at,u'(t)) foraa.re (0,1)},

where [l) + l% = 1. Here derivative V' is understood in the sense of distributions. By a

solution of problem (1.1) we mean a function u € CL([0, TY), such that
V() =u*() foraa.te (0,T)

with v/ € (a(,u/(-))) and u* € LP (0, T)), u*(t) € 3j(t,u(t)) for almost all € (0, 7).

Our hypotheses on the set-valued map a(t,y), include as a special case the scalar
p-Laplacian differential operator. Recently there has been increasing interest for sec-
ond-order scalar periodic differential equations involving the p-Laplacian differential
operator. We mention the works of Dang and Oppenheimer [6], Denkowski et al.
[8], Del Pino et al. [7], Fabry and Fayyad [9], Gasinski and Papageorgiou [10,11],
Guo [13] and Papageorgiou and Papageorgiou [19]. Most of the aforementioned
works prove existence theorems. Multiplicity results were proved only by Del Pino
et al., Denkowski et al., Gasinski-Papageorgiou and Papageorgiou—Papageorgiou.
In all these works the differential operator is the scalar p-Laplacian and the first
and third assume a smooth potential (i.e. j(t,-) € C'(R)), while in Gasinski-Papa-
georgiou the potential j(t,) is in general nonsmooth. In Del Pino et al. the method
of the proof uses degree theory and the time map. In Gasiniski-Papageorgiou and
Papageorgiou—Papageorgiou, the approach is variational using local linking
(Gasinski-Papageorgiou) or the so-called second deformation theorem
(Papageorgiou-Papageorgiou). All these works prove the existence of two solutions.
For other periodic multiple solutions of hemivariational inequalities, we refer to Adly
and Motreanu [1] and Motreanu and Radulescu [18].

Our approach in the paper is variational and uses the critical point theory for locally
Lipschitz functions (see Chang [4] and Kourogenis and Papageorgiou [14]). We also
prove a “three solution theorem”. This is done for a so-called “strongly resonant”
problem (terminology coined by Bartolo et al. [2]). None of the previous works men-
tioned above examined such problems. The main difficulty that such problems exhibit
is a partial lack of compactness (see Lemma 3.4 below).

In the next section, we recall basic definitions and notions needed in what follows.
Section 3 contains the theorem on the existence of two solutions of problem (1.1). In
Sect. 4 we proof the theorem on the existence of there solutions of problem (1.1).

2 Mathematical background

Let X be a Banach space and X* its topological dual. By | - | we denote the norm
in X, by || - ||« the norm in X*, and by (-, ) the duality brackets for the pair (X, X™).
A function ¢ : X+— R is said to be locally Lipschitz, if for every x € X, there
exists a neighbourhood U of x and a constant k > 0 (depending on U), such that
lp(z) —e()| < k|lz—y| for all z,y € U. It is well known that a convex, lower semi-
continuous and proper (i.e. not identically +o00) function g: X — R = R U {400} is
locally Lipschitz in the interior of its effective domain domg = {x € X : g(x) < +o0}.
For a locally Lipschitz function ¢: X +—— R, we define the generalized directional
derivative at x € X in the direction & € X, by
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b o' +th) — p(x))

<p0(x; h) =limsu .

X = x

1\ 0

The function X 3 h — goo(x;h) € R is sublinear, continuous and so from the
Hahn-Banach theorem it follows that ¢°(x; -) is the support function of a nonempty,
convex and w*-compact set, defined by

dp(x) = (x* € X*: (x*,h) < ¢"(x;h) forall h € X}.

The set d¢(x) is called generalized or Clarke subdifferential of ¢ at x. If p: X +—— R
is also convex, then the subdifferential of ¢ in the sense of convex analysis coincides
with the generalized subdifferential introduced above. If ¢ is strictly differentiable at
x (in particular if ¢ is continuously Gateaux differentiable at x), then d¢(x) = {¢’(x)}.
If ,¥: X+— R are locally Lipschitz functions, then 9(p + ¥)(x) € dp(x) + Y (x)
and d(tp)(x) = tdp(x) forallt € Rand all x € X.

Let ¢: X — R be a locally Lipschitz function on a Banach space X. A pointx € X
is said to be a critical point of ¢, if 0 € dp(x). If x € X is a critical point of ¢, then the
value ¢ = ¢(x) is called a critical value of ¢. It is easy to see that, if x € X is a local
extremum of ¢, then 0 € dp(x). Moreover, the multifunction X > x —> d¢(x) € 2X*
is upper semicontinuous, where the space X* is equipped with the w*-topology, i.e.
for any w*-open set U € X*, theset {x € X : d¢(x) € U} is open in X. For more
details on the generalized subdifferential we refer to the book of Clarke [5, Chap. 2].

In the classical (smooth) critical point theory, crucial role plays a compactness type
condition, known as the Palais—Smale condition. When the function is only locally
Lipschitz, this condition takes the following form (introduced by Chang [4, Definition
2,p 113])

A locally Lipschitz function ¢: X —— R satisfies the nonsmooth Palais-Smale
condition, if any sequence {x,},>1 € X such that

sup{p(x,) : n>1} < +oo
and
m? (x,) = inf{||x*||4 : x* € dp(x,)} — 0 as n — +oo,
has a strongly convergent subsequence.

If ¢ € CL(X), then d¢(x,) = {¢'(x,)} and so we see that the above definition of the
Palais—Smale condition coincides with the classical one.

We will also use a weaker form of the Palais—Smale condition, which for the smooth
functions was first introduced by Cerami [3]. In our nonsmooth setting this condition
takes the following form

A locally Lipschitz function ¢: X+—— R satisfies the nonsmooth Cerami
condition, if any sequence {x,},>1 € X such that

sup{p(x,) : n > 1} < 400
and
(A + lIxalDm? (xn) — 0 as n — o0,

has a strongly convergent subsequence.
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In our hypotheses, we will use the first nonzero eigenvalue A; of the negative
p-Laplacian —Apu = — (Ju/|P —2u )/ with periodic boundary condition. So we consider
the following quasilinear eigenvalue problem:

— (W @2 1)) = AMu@ P~ 2ur) foraa.re (0,T)

u(0) =u(T), u'(0) =uv(T). (2.1)

It is well-known that Ap = 0 is an eigenvalue of (2.1) and is simple and isolated. So, if
A1 =inf{A > 0: Ais an eigenvalue of — A}, then 41 > 0 and

Il = Allully, VueV, (22)

where V = {u € Wégfl((o, 7)) : fOT lu(®P~2u(rdi = 0} (see Mawhin [17, Corollary
9.3, p 60]).

We will use the generalized Ekeland variational principle (see e.g. Gasiniski and
Papageorgiou [12, Corollary 1.4.7, p 91]), in the following form

Theorem 2.1 If (X,dy) is a complete metric space, p: X —> R is proper, lower semi-
continuous and bounded below, ¢, ). > 0 and xo € X is such that

< i f )
(P(XO) =mle &
then there exists X) € X, such that

o(x) < @(xo), d(x;,x0) <A,
o(6) < o(x) + id(x,m, Vre X.

The next result is due to Szulkin [20, Lemma 3.1, p 81].

Theorem 2.2 If X is a Banach space, x: X —> R = R U {400} is a lower semicontinu-
ous, convex function with x(0) = 0 and

—lhllx < x(h), VYhelX,
then there exists u* € X*, such that ||u*| ;. <1 and
(w*,hy < x(h), VhelX.

In the three-solution result we will use the notion of linking, which plays a crucial
role in critical point theory (classical and nonsmooth alike). Suppose that X is a Haus-
dorff topological space and £ and D are nonempty subsets of X. We say that the sets
Ey and D link (homotopically) in X if E; N D = ¢ and there exists a set E € X, such
that £y € E and for any continuous function ¥: £ — X, such that ¥ |g, = idg,, we
have 9 (E) N D # @.

Using this notion, Kourogenis and Papageorgiou [14] proved the following abstract
minimax principle (see also Gasinski and Papageorgiou [12, Theorem 2.1.2, p139] for
a more general version).

Theorem 2.3 If X is areflexive Banach space, E1 and D are nonempty subsets of X with
D closed, Ey and D link in X, ¢: X — R is locally Lipschitz, satisfies the nonsmooth

Cerami condition, sup ¢ < igf ¢ and
Ey

¢ = inf supp(n(v)),
nel yep
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where
I' = {neCEX): nlg =idg}
and E 2 Ej is as in the definition of linking sets,
then ¢ > igf(p and c is a critical value of ¢, i.e. there exists a critical point xo € X of ¢

such that ¢(xo) = c. Moreover, if c = igf @, then xog € D.

3 Existence of two solutions
The precise hypotheses on the data of (1.1) are the following:

H(a) a(t,y) = 0G(t,y), where G: (0,T) x R — R is a functional, such that

(1) the function (t,y) —> G(t,y) is continuous;

(2) foreveryt € (0, T), the function y —> G(¢,y) is strictly convex, G(¢,0) = 0 for
allt € (0,T) and 0G(0,-) = dG(T,-);

(3) forallte (0,7),ally € R and all v* € a(t,y) = 0G(t,y), we have

V| < ar(6) +crlylP 7,

with a; € LP ((0, 7))+ (where 117 + 1% =1),¢1 >0
(4) forallte (0,7),ally € R and all v* € a(t,y), we have

vy < pG(t,y);
(5) forallte (0,T)andall y € R, we have

clyl’ = G, y),

for some ¢g > 0.

Remark 3.1 Suppose that 8 € Cper([0,T]), 8 > y > Oforallz € (0,T) and G(t,y) =
5BOIyIP. Then

a(t,y) = 8G(t,y) = Byl 2y

satisfies hypotheses H(a) and the resulting differential operator is a weighted
p-Laplacian. If § = 1, then we have the p-Laplacian. We remark that hypotheses
H (a) do not require that the differential operator is homogeneous. Such single valued
operators independent of ¢ € (0, T') were considered by Mandsevich and Mawhin [15]
and Mawhin [16]. However, in these works the problem is vectorial and no growth
restriction is imposed on the map y — a(y).

Another possibility of G is the following

=010 4928 -1
p

G,y
withp > 1and B € Cper ([0, T]), B(t) > y > Oforallz € (0, 7).
One more possibility of G is the following
®
Gy = %[(1 +yh? —1],
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where p > 1 and B are as above. In this case, the map a is really multivalued and it
still satisfies hypotheses H (a).

H(j)1J: (0,T) x R — R is a function, such that

(1) forevery ¢ € R, the function t — j(t, ¢) is measurable;

(2) for almost all + € (0,7), the function ¢ — j(t,¢) is locally Lipschitz with
)i ((0, 7)) +-Lipschitz constant;

(3) forevery M > 0, there exists @y € L' ((0, 7)), such that for almost all ¢ € (0, T),
all || < M and all u* € 9j(t, ), we have |u*| <apy(b);

(4) there exist j+ € L1((0, 7)), such that

;E’Eoo’(t’ ¢) =jx(,

T
uniformly for almost all # € (0, 7) and / jx(Hdr <0;

0
(5) there exists § > 0, such that for almost all # € (0,7) and all |¢| < §, we have
j(t,¢) > 0 (local sign condition);
(6) foralmostallse (0,7) and all ¢ € R, we have

j@t,¢) <corlclP

with cp > 0 as in hypothesis H(a)(5) and A; > 0 being the first nonzero eigen-
value of the negative p-Laplacian with periodic boundary condition.

Remark 3.2 Hypothesis H (j)1(4) classifies the problem as strongly resonant. Hypoth-
eses H(j)1(5) and (6) imply that j(z,0) = O for almost all ¢ € (0, T').

L, .
We consider the nonlinear operator A: Wég((o, T)) —> 2Wor (01" defined by

/

such that

Aw) = [v* € Wé’fﬁ((o, T))* : there exists v € S’Z(.’u,(.))

T
for ally € Wpl (0, 7)) = (v*,y) = / v(t)y’(t)dt].
0

Hence

Awy ={—-Vv:ve S‘Z;,,u,(_))}

(the derivative taken in the sense of the distributions). Clearly for every u € Wg,g

((0, 7)), the set A(u) < Wpl,é’;((O, T))* is nonempty, convex and w-compact. Moreover,
the function u —> A(u) is monotone, thus in fact maximal monotone (see Gasinski
and Papageorgiou [12, Proposition 1.4.6, p 74]).

Lemma 3.3 Let hypotheses H(a) hold. If {u,},>1 C er,’epr((O, T)) is a sequence, such
that

u, —> u  weakly in Wpl)g;((o, 7)), (3.1

vheAy,) VYn>1
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and
lim sup(v},, u, —u) < 0, (3:2)
n—>—+00
then
Uy — u in Wph((0,7)). (3.3)
Proof  Let {up}p>1 < per((0 T)) and {v;},>1 € per((0 T))* be sequences as

postulated in the assumptions of the lemma. Then, we have
T
<V;:7 Up — u) = / vn(0) (un — u)/(t)dt vn > 1,
0

with ,, € S A, ()" By virtue of hypothesis H(a)(3), we see that the sequence {v,},>1 C
LY ((0, 7)) is bounded. So by passing to a subsequence if necessary, we may assume that
v —> v weakly in L” (0, T)) (3.4)

for some v € LV (0, T))

We claim that v € S° To thisend let y € WI]):fr((O 7)) and w* € A(y). From

a(u'()”

the definition of the operator A, we know that we can find w € s such that

a(-y'())’
T 1

(w*,z) = / w(nZ (ndr, Yz e Wph((0,T)).
0

Since a(t,¢) = dG(t,¢), the operator ¢ —> a(t,¢) is maximal monotone and so, we
have

T
0=< / 0 — w(D) (e () — ¥ (O)dr
OT T
= / V() (u,, — u")(H)dt + / v — yH)(de
0 0

T
—/0 w(t) (uy, — y)(t)dt

T T
= (Vi uy —u) +/ v —y)(@)dt — / w0 (u), — y)(@)dt. (3.5)
0 0

From (3.1), (3.2) and (3.4), if we pass to the limit as n — +o0 in (3.5), we obtain

T
= /0 O —w®)W @) =y (O)dt = (v —w*,u—y)

with v* = —V/. But the pair (y,w*) € GrA was arbitrary and we know that the
operator A is maximal monotone. So it follows that (u,v*) € Gr A, i.e. v € A(u) and

T
v, 2) = / Y0 (Odr, ¥z e W0, T)
0

for some v € Sa( 20 andsov="Vve Sa( w0
Because of the hypotheses, we have
lim sup(v;; — v¥,u, —u) <0. (3.6)
n—-+00
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On the other hand by virtue of the monotonicity of a(, -), we have

T
liminf (v — v*,u, — u) = liminf / Wn(t) — v(6) (i (1) — W/ (0)de = 0. (3.7)
0

n—+00 n—+00

Comparing (3.6) and (3.7), we infer that

T
(vy = viup —u) = / (Va(t) — v(0) (uy, (t) — ' (£))dt —> 0.
0

Because of the monotonicity of a(t, ) = dG(¢, -), the integrand
Bn@) = (v, —v)O)(w, —u)t) — 0 fora.a.re (0,7). (3.8)
So we have
Bnt) — 0 foraa.te (0,7)
and
1Bn(®)] < k1(t) fora.a.te (0,T)andalln > 1,

with kq € L1((0, T))+.Forall (t,y) € (0,7) x Rand all v € a(t,y), from the definition
of the convex subdifferential, we have

v(=y) = Gt,0) -Gy = =G(ty)
so, from hypothesis H(a)(5), we get
vy > G(t,y) = colylP. (3.9)
Using hypothesis H(a)(3) and (3.9), for all t € (0, T)\ N, with |[N|; = 0, we have
ki) = Bu(t) = (va —v)(O) (), — u)(@)

> co[lu, ) + |t O] — [, )P (a1 (&) + c1lu' )P~
— O (a1 (®) + e lu, P ). (3.10)

From (3.10), it follows that for all ¢+ € (0,T)\ N, the sequence {u,(H)},>1 S R is
bounded. So by passing to a subsequence (depending in general on ¢ € (0, T)\N), we
may assume that

u,() — u@) inR.
We fix t € (0,7) \ N and select f,(¢) € a(t,u(t)), such that
n(0) = (| = d(va(0),at,7(0)) < h*(a(t,u, (1)), at,u))),

with #* being the Hausdorff distance of sets (see Gasiriski and Papageorgiou [12,
Definition 1.2.4, p 18]). Note that {f},(1)},>1 € a(t,1u(r)) € Pk.(R) and so by passing to
a subsequence if necessary, we may assume that

fu® —> f(®) € alt,u®).

Because a(t,-) is maximal monotone, it is upper semicontinuous (see Gasinski and
Papageorgiou [12, Proposition 1.4.5, p 73]) and also A-upper semicontinuous (see
Gasinski and Papageorgiou [12, Proposition 1.2.8, p 19]). Therefore, we have

I (a(t,u, (1)), a(t,u(t)) — 0
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o)
vo(t) — f(@) forallt e (0, T)\N.
Because of (3.8), in the limit as n — 400, we have

(F(O) = )@@ — ' ©) = 0, Vie (0, THN. (3.11)
By hypothesis, we have that a(z,-) € dG(t, ) and the function y —— G(t, y) is strictly

convex. Therefore the operator y — af(t, y) is strictly monotone. Since f(¢) € a(t, u(t))
and v(t) € a(t,u'(¢)) for all t € (0, T)\N, from (3.11), we infer that 7(r) = u/(¢) for all
t € (0, T)\N. Therefore, we have

w, () — /() foraa.re 0,7) (3.12)

and from (3.1), also

u, — u weaklyin LP((0, T)). (3.13)

n

From (3.10), we see that

colul, (O < ki (0) + coltd' O + [t/ 0)| (a1 (6) + c1]ul, (1P
+ |, O (a1 (®) + 1l @ FP).

Using Young’s inequality with ¢ > 0, we obtain

&
colu, P < ki () + col/ DI + ay ()’ ()] + $|u’(t)|” + I;w;(t)l”

/

&
+ a1()lu, (O] + Elu/n(l)lp + Ll o). (3.14)
p ep

If we choose ¢ < ¢p (recall that 117 + z% =1), from (3.14), it follows that the sequence

{lu, ()P} < L'((0, 7)) is uniformly integrable. Because of (3.12), (3.13) and Vitali’s
Theorem (see e.g. Gasiniski and Papageorgiou [12, Theorem A.2.1, p 715]), we have
that

lupllp — 1llp. (3.15)

Combining (3.12), (3.13) and (3.15) and using the Kadec—Klee property (see Gasiriski
and Papageorgiou [12, Remark A.3.11, p722]), we have that

u, — u in LP((0,T))
so finally (3.3) holds. O

We consider the energy functional ¢: ng;((o, T)) — R, defined by

T T
pu) = / G(t,u'(1)dt — / j@t,u@)de.
0 0

We know that ¢ is locally Lipschitz (see Gasiniski and Papageorgiou [12, Theorem
1.3.10, p 59)).

The next lemma illustrates the partial lack of compactness which characterizes
strongly resonant problems.
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Lemma 3.4 If hypotheses H(a) and H (j)1 hold, then ¢ satisfies the nonsmooth Cerami

condition at any level ¢ # — fOT jx(Hde.

Proof Letc # — fOTji (t)dt and let {u,},>1 € Wé;f;((o, T)) be a sequence, such that
o) — ¢ and A+ ||u,)m?(u,) — 0. (3.16)

Let w} € 0¢(u,) be such that m?(u,) = ||wj ||« for all n > 1. The existence of such
an element follows from the weak lower semicontinuity of the norm functional in
Wé,g’:((o, T))* and from the weak compactness of d¢ (i) C W;;ﬂ((o, T))*.

Let Ig: LP((0,T)) — R be the integral functional, defined by

T
Ic(y) :/O G(t,y@®)dt.

We know that I5 is continuous, convex. Let D € ﬁ(W;;,’}((O, 7)); LP((0,7))) be
defined by

Du = —u.
u at
We have
T 1
/ G@t,u'@))dt = (I o D)w), Vu e Wpk((0,T))
0
SO
d
dlgoD)w) = —D* g = —aal(;(u’), Yu e Wég((o, 7))
and finally

0lgoD)u) = A

(see Gasiriski and Papageorgiou [12, Proposition 1.3.15, p 54 and Remark 1.3.6, p 55]).
Then

wh = vi—u,, VYn=>1, (3.17)

withv} € A(u,)andu), € S[a)j(- ()" We claim that the sequence {u,},>1 € Wég’r((o, T))
is bounded. Suppose that this is not true. By passing to a subsequence if necessary, we
may assume that

lunl —> +o0.

Un
lun

Lety, = for all n > 1. We may assume that

yn —> y  weakly in Wé’e’;((o, T)),
Vn —> y in C([0, T])

(recall that the embedding Wég((o, T)) € C([0,T]) is compact). From the choice of
the sequence {u,},>1 € W;;{;((o, T)), we have

T ’ T ;
@ (un) _/ G(t,un(t))dt_/ ](t,un(t))dt . M
0 0

l[2tn 1P lleen (1P l[2tn 1P = llunl?

(3.18)
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for some M| > 0. Because of hypothesis H(a)(5), for almost all € (0,7) and all
n > 1, we have

colu, O < G(t,uy, (1))
SO

G(t,u, (D)

ol OF = — =5
n

(3.19)

Moreover, by virtue of hypothesis H(j);(4), we can find M> > 0, such that for almost
allt € (0,7) and all |¢| > M;, we have

it Ol = max {lj+ O], [i- O} + 1. (3.20)

On the other hand from hypothesis H(j);(3) and the mean value theorem for locally
Lipschitz functions (see e.g. Gasinski and Papageorgiou [12, Proposition 1.3.14, p53]),
we see that for almost all [¢]| < M, we have

@O < B0 (3.21)

with 8; € L1((0, T)).. From (3.20) and (3.21), we conclude that for almost all ¢ € (0, T)
and all ¢ € R, we have

@& O < pa(0)
with 8, € L1((0, T))+.So we have

/Tja,un(r)) dl‘ _ 1Bl
0

llen 1P = uallP

(3.22)

Passing to the limit as n — 400 in (3.18) and using (3.19) and (3.22), we obtain
colly'lp < <o lim inf Ily,lp <0

soy=£& eR.
If &€ =0, then from (3.18) and (3.19), we have

M T jt,un())
ol I < / 16 ) 4
onlle = e T e e

SO
y, — 0 in LP((0,T))
and thus

Yo — 0 in Wpli((0, 7)),

a contradiction to the fact that ||y,|| = 1 for alln > 1. So & # 0. Suppose that & > 0.
Then

u,(t) — —4oo, Vte (0,7).

In fact we claim that this convergence is uniformin ¢ € (0, 7). To thisend let 8’ € (0, &).
Since y, —> & in C([0, T)), we can find ng = ny(8’) > 1, such that for all n > ny and
allt € (0,T), we have
lyn(®) —&| < &
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SO
0<8 =58 < y®

(hence u,(t) > 0 for all n > np and all t € (0, 7)).
Moreover, since |lu,| —> 400, for a given n > 0, we can find n; = ny(n) > no,
such that

lunll = n > 0, Vn=>ny.
For alln > ny and all ¢ € (0, T), we have

up () < up ()
n T luall

=yn®) = 68 >0
SO

u,(t) > néy > 0, Vvee 0,7), n>ny.
Because n > 0 was arbitrary, we conclude that

min u,(t) — —o0.
1e[0,7] n(0)

Using this fact in conjunction with hypothesis H(j){(4), we see that for a given ¢ > 0,
we can find ny = ny(e) > 1, such that for almost all ¢ € (0, T) and all n > ny, we have

J+(® —¢e Z jltun @) < j+ @) +e¢
o)
t T
/ J(t, uy ())dt — / j+(ode. (3.23)
0 0
Recall that ¢ (1) — c. For a given ¢ > 0, we can find n3 = n3(¢) > ny, such that

lpup) —c| <&, Vn>n3

SO
T T
c—e < @o(uy) = / G, u;l(t))dt - / jt,uy(®))dt < c+e. (3.24)
0 0
From the choice of the sequence {u,} C er,;f’r((O, T)) (see (3.16) and (3.17)), we have

= &n

T
<ﬁwm—/ 16 (D (Dt
0

with &, \( 0, so

T T
‘/ vn(t)u’n(t)dt—/ u:‘l(t)un(t)dt‘ < &, (3.25)
0 0

/

with v, € Sﬁ(_ 0 () From the definition of the generalized subdifferential, for almost

allz € (0,7) and all n > 1, we have

Wi Oun(t) < O un(0); un (£))

Y e on
= limsup 1z + en(0) = J Zm). (3.26)

2 — up () &

e\ 0
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Because u, () —> +oo (uniformly in # € (0, 7)), up to a subsequence, we must have
an(n) — +00 as n — +oo and so by virtue of hypothesis H(j);(4), for a given ¢ > 0,
we can find nqg = n4(e) > 1, such that

2 2

. & . R 3
O = = = 6z Feun®) < jo O+ = Vnzng (3:27)
and
. 2 . &?
i+ - = =@, Zny) = J+O + 5 Ynzn. (3.28)

Using (3.27) and (3.28) in (3.26), we see that for almost all t € (0, T) and all n > ny,
we have

g2

lupy(Dup()] < — = ¢
e

SO
w,(Ou,(t)y — 0 uniformlyinz e (0,7)

and thus
T
/ u;,(Ou,(Hdt — 0. (3.29)
0
Using (3.29) in (3.25), we obtain
T
/ v (Ou,(Hdt —> 0. (3.30)
0
Because of hypothesis H(a)(4), we have that
T T
/ vn(Ou, (Hdt < p / G(t, u, (1)dt,
0 0
and from (3.30), we have
0 < hmmf/ G(t,u, (1))dt. (3.31)

On the other hand since v, (¢) € a(t,u,,(t)) = dG(t,u, (¢)) for almost all z € (0, T), from
the definition of the convex subdifferential, we have

va(u, (1) > G(t,u, (1) foraa.te (0,7)

so from (3.30), we have

T
lim sup/ G(t,u,,()dt <O. (3.32)

n——+o00

From (3.31) and (3.32), it follows that

T
/ G(t,u),(H)dt — 0. (3.33)
0
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Then returning to (3.24), passing to the limit as # — +o0 and using (3.23) and (3.33),
we obtain

T
c—¢ < —/ j+(dt < c+e.
0

Let ¢ N\, 0, to conclude that ¢ = — fOT j+(®dt, a contradiction. This proved that the
sequence {u};>1 < Wl},g’r((o, T)) is bounded. Thus by passing to a subsequence if

necessary, we may assume that

u, — u weakly in Wégﬂ((ﬂ, T)),
u, — u in C([0,T)).

From the choice of the sequence {u,},>1 S Wg,’epr((O, T)), we have

T
(Vi tn — ) —/ wy (O, —u)(Hdt| < e,
0

with g, N\ 0. Note that fOT uh (O (up — w)(t)dt —> 0 (see hypothesis H(j)1(3)). So it
follows that

(Vi up —u)y — 0.
Invoking Lemma 3.3, we obtain that
Uy — w in Wp((0,T)).

The argument is similar if we assume that & < 0. Now instead of j;, we use j_.
So finally we have that ¢ satisfies the nonsmooth Cerami condition at any level

¢ # — [ jeodr. O
Now we are ready for our first multiplicity result.

Theorem 3.5 If hypotheses H(a) and H(j), hold, then problem (1.1) has at least two
nontrivial solutions ug, yo € Clljer([O, ).

Proof By virtue of hypotheses H(a)(5), H(j)1(3) and (4), the energy functional ¢
is bounded below. Consider the open set

T
U, = [ue Wé;;;((o, ) : / lu@ P 2ut)dt > 0
0

and let m4 = inf ¢. Because G(¢,0) = 0 for all r € (0, T) and j(z,0) = O for almost all
te(0,7) (see I%remark 3.2), we have
my < ¢(0) = 0.
If my = ¢(0) = 0, then from hypothesis H (j)1(5) (the local sign condition), for every
& € (0,68), we have
o) = my.

Note that for every £ € (0,5), we have & € int Wll,épr((O, T))+ and so & is a local min-
imizer of ¢, hence 0 € d¢(&). Therefore we have produced a continuum of nonzero,
constant solutions of problem (1.1).
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Next suppose that m; < 0 = ¢(0). Because — fOT jx(@®dt > 0 (see hypothesis
H(j)1(4)), from Lemma 3.4, it follows that ¢ satisfies the nonsmooth Cerami condi-

tion at level m,.. Let ¢4 : Wll,‘;’}((O, T)) — R = R U {400} be defined by
_ @(u), ifue ﬁ+7
o+ () = [ +o00, otherwise.

Evidently ¢ is proper, lower semicontinuous and bounded below. Using Theorem
2.1, we can find a sequence {u,},>1 € U4, such that

O+ (un) = @un) \ my
and

llen — i

Lp
— Vye W, 0,T)).
n(d+ ua)’ 0 S Pe

oyr(up) < @ (y) +

LetA>0andh € Wg,;f}((O, T)) and set y = u,, + Ah. Since u,, € U, we can find§ > 0,
small enough so that

y = u,+rheUy, Vire(0,3]

Therefore, we have

Al _ A . h
Tnd ) = Q1 (Up + 2h) — @ (up) = Uy + rh) — o(up)
SO
A o Pln M) — o) 0.5
n(1+ flugll) — A ’ '
and thus
A < unsh), Yhe WL, T >1
—m < @ (unsh, € Wper((0, 7)), n>1.

Using Theorem 2.2, there exists w} € er,g((O, T))* with ||wy ||+ = 1, such that

Wi h) < n(1+ [unlDg’ s h),  Vh e Wééf]r((O, 1))

SO

*

S — € dp(uy), VYn=>1
1 s
‘l( ”lt}’l”)

and thus

(I + llunlhm?(up) <= — —> 0.

S|

Thus by Lemma 3.4, we can say that
ol
up —> ug in Wph((0,7)).
We have that ug € U, and

my = @1 (ug) = ¢(uo).
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Suppose that uy € dU,. Then

T
/ luo (O 1P2up(r)dt = 0.
0

Moreover, from hypothesis H(a)(5) and H (j)1(6) and the variational characterization
of A1 > 0 (see (2.2)), we have that

T T
0> my = [ Geapondi— [ oo
0 0

> colluglly — corrlluoll}

> colluglly — colluglly = 0
a contradiction. So up € U,. Hence uy # 0 is a local minimizer of ¢ and for this
reason we have that 0 € d¢(up). This inclusion implies that we can find v € A(ug)

* P’ P’

and uj € S8j(~,u0(-))’ aufy ()"
Let (-,-) be the duality brackets for the pair (Wll,;ﬁ((o, 7)), Wé’é}((o, T))*). For every
DS C} ((0,T)), we have

such that vjj = u;j. By definition v§ = —v(, with vy €

T
(vp,9) = / ug (v (Hdt,
0

SO

T T

/ vo()Y (Hdt = / uh (09 (tydt
0 0
and thus
(=vp,9) = (Ui, ).

Because the embedding Cé((O, T)) C Wé;f;(((), T)) is dense, from the last equality and
since 1 € Cg((O, T)) was arbitrary, we infer that

Vi@ = —vp() = uj() foraa.re (0,7),

o(0) = uo(T) (3:34)

with vy € Sz(-,u()(-))’ uj € ng(-,uo(-))' Evidently vy € Wlsp/((()’ T)) € C([0,T]) and we
have
up(® = a~l(t,vo(t)), Vte(0,7).

By virtue of hypothesis H(a)(2), the function (¢t,v) —> al@,v)is single valued. We
claim that this map is continuous. To this end suppose that {(t;,v,)},>1 € (0,T) x R
is a sequence, such that

(t}’la Vn) — (15 VO) ln (05 T) X R
and
Yn = a  (tn,vn), Yn>1.

From the definition of the convex subdifferential, hypothesis H(a)(5) and since
G(t,0) =0forallt € (0,T), we have

Vayn = Gy, yn) = CO|yn|p
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SO
1
yalP~t < —|val Vn>1.
o

It follows that the sequence {y,},>1 € R is bounded and, passing to a subsequence if
necessary, we may assume that

yn — y inR.
Again form the definition of the convex subdifferential, we have that
vz =yn) = G(tn,2) — Gtn,yn), VZ €R
o)
vo(z—y) = G(t,2) —G(t,y), VzZeR,
thus
vo € 0G(t,y) = a(t,y)

and so y = a=1(t,vp). This proves that indeed the map (,v) —> a~1(,v) is contin-
uous on (0,7) x R. Hence the map ¢ —> al(t,vo(0) = u{)(t) is continuous and so

ug € CH([0, T)). Using integration by parts, for every n € Wégﬂ(((), T)), we have

T T
vg.m = /0 vo()n' (Hde = /O ui(Hn(nde

/

v4

with vg € aCea () SO

T T
vo(TIn(T) — vo(O)n(0) — /0 Vo On(Hde = /0 w0 (0 di
and thus
Vo) = vo(T)n(D).

Since n € er,;f;((o, T)) was arbitrary, it follows that vo(0) = vo(T). Then because of
hypothesis H(a)(2), we have that

up(0) = a1(0,v(0)) = a (T, vo(T)) = uy(T)

1
so ug € Cper

Considering the open set U_ C Wpl,;f;((O, T)), defined by

([0, T) is a nontrivial solution for problem (1.1).

T
U_ = [u e Wph((0,7)) : / ()P 2u()dt < 0]
0

and arguing as before (with U replaced by U_), we obtain another solution yp € U_

of (1.1), with yg # 0, yo # up.
This way we have produced two distinct nonzero solutions for problem (1.1). O
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Remark 3.6 An example of a nonsmooth function satisfying hypotheses H(j); is the
following (for simplicity we drop the ¢-dependence):

ecoret, if¢ < -1,

cormlelP, if gl =1,

CoM
Ve

Another function satisfying hypotheses H (j); is the following:

j©) =
if¢ > 1.

arctan(¢ + 1), if ¢ < —1,

, if ¢ € [-1,0],

cor1¢?
at

=

J©) =

, if ¢ >0

with a > 1.

4 Existence of three solutions

We can guarantee the existence of three solutions, by modifying our hypotheses on
the nonsmooth potential. More precisely our new hypotheses on j are the follow-
ing.

H(j)2j: (0,T) x R — R is a function, such that

(1) forevery ¢ € R, the function t — j(t, ¢) is measurable;

(2) for almost all r € (0,7), the function ¢ — j(t,¢) is locally Lipschitz with
L ((0, 7)) +-Lipschitz constant;

(3) forevery M > 0, there existsay € L'((0, T))., such that for almost all # € (0, T),
all |¢| < M and all u* € 9j(t,¢), we have |u*| < ap(b);

(4) there exist j+ € L1((0, 7)), such that

;ETOOJ(I’ ¢) = jx(,

uniformly for almost all ¢ € (0, T);
(5) foralmostallse (0,7) and all ¢ € R, we have

jt,¢) < comlelP,

with ¢p > 0 as in hypothesis H(a)(5) and A; > 0 being the first nonzero eigen-
value of the negative p-Laplacian with periodic boundary condition;
(6) there exist - < 0 < &, such that

T T
/ jtEpdt > 0 > / je@®de.
0 0

Remark 4.1 Note that the strong resonance hypothesis H (j)2(4) is still in effect. We no
longer impose the local sign condition (see hypothesis H(j)1(5)). Instead we employ
hypothesis H (j)2(6).

A careful reading of the proof of Lemma 3.4, reveals that the result remains valid
in the present situation, namely the energy functional ¢ satisfies the nonsmooth Ce-

rami condition at any level ¢ # — fOT j+()dt. Then we can prove the following three
solutions theorem.
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Theorem 4.2 If hypotheses H(a) and H (j), hold, then problem (1.1) has at least three
solutions ug, yo, 20 € Cll,er([O, TD.

Proof  Using the sets Uy C Wég’;((o, T)), as in the proof of Theorem 3.5, we can

produce two nontrivial solutions ug, yo € Wr],’e’;((O, 7)), up € Ust, yo € U_. Note that
in the present setting, it cannot happen that my = 0, since

T T
my < —/ jit,Edt < 0 and m_ < —/ j,E-)dt < O
0 0

(see hypothesis H(j)2(6)).
Next let

Ey = {§1,6-)
E=[¢ 60== {ue Wli((0,T): & <u() <& forallte (0,7},

T
D= ‘u € W;g;((o, ) : / lu@) P 2u(ndr = o].
0
We claim that £ and D link in Wég((o, T)). Indeed, first note that £ N D = . Next
1, . . .
let 9 € C(E; Wpk((0,T))), with ﬁ|E1 = ld|E1 Jie 9(6.) = & and 9(£,) = &,. Let
[/ Wé’e’;((O, T)) — R be defined by

T
Y = / lu(@) P~ 2u(n)dr.
0

Then ¢ € C(ng’r((o, T))) and so ¥ o ¢ € C(E). We have
o)) = ¥(E-) <0 < ¥ = (o).

Evidently E is connected. Hence so is (¢ o ¢#)(E) and so we can find u € E, such
that (¢ o #)(u) = 0. We have v (¢ («)) = 0, which means that ¢ (u) € D. Therefore

¥ (E) N D # (@, which proves that the two sets £y and D link in Wg,g’}((O, T)). Applying
Theorem 2.3, we obtain zg € Wpl);g((o, T)), such that

v(zo) > igf(p =0 > mge and 0 € dp(zo).

Since my = ¢(up), m— = @(yo), we see that zo # up and zp # yo and from
the inclusion 0 € d¢(zp), it follows that zg € Cg)er([O, T is a third solution of
problem (1.1). |

Remark 4.3 A nonsmooth potential satisfying hypothesis H(j), is given by the
following function (again for simplicity we drop the ¢-dependence):

26‘?2: — oM, i <1,
o eonler, it ¢e[-1,0],
O =1 ¢, it ¢e1],
cl

né _ arctan(¢ — 1), if ¢>1

with ¢ > 1.
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